期刊文献+

m重非齐次马氏链的Cesaro平均收敛性 被引量:3

Convergence in the Cesaro sense for m order nonhomogeneous Markov chains
下载PDF
导出
摘要 引入m重非齐次马氏链的Cesaro平均收敛的概念,给出并证明m重非齐次马氏链的一个Cesaro平均收敛定理.作为应用,得到了m重非齐次马氏链熵率存在的一个定理. In this paper,the notion of convergence in the Cesaro sense for m order nonhomogeneous Markov chains is introduced,and a convergence theorem in Cesaro sense for m order nonhomogeneous is given.As a application,a existence theorem of the entropy rate for the m order nonhomogeneous Markov chains is obtained.
作者 汪进 杨卫国
出处 《纯粹数学与应用数学》 CSCD 北大核心 2008年第4期752-758,共7页 Pure and Applied Mathematics
基金 国家自然科学基金(10571076)
关键词 m重非齐次马氏链 Cesaro平均收敛 周期强遍历 m order nonhomogeneous Markov chains, convergence in the Cesaro sense, periodic strongly ergodic
  • 相关文献

参考文献5

二级参考文献12

  • 1刘文,杨卫国.关于有限马氏链相对熵密度和随机条件熵的一类极限定理[J].应用数学学报,1995,18(2):234-247. 被引量:12
  • 2Bernoulli J. Ars conjectandi[M]. Basel, Academic Press, 1713.
  • 3Etemadi N. An elementary proof of strong law of large numbers [J]. Zeitschr. f. Wahrschein lichkeitstheorieu. Verw. Geb., 1981,55(1), 119-122.
  • 4Wen Liu. An analytic technique to prove stronglaw of large numbers[J]. Amer. Math. Monthly, 1991,98 (2), 146- 148.
  • 5Doob J L. Stochastic Processes[M].New York: Wiley, 1953.
  • 6Dubins L E. , Freedman D A. A sharper form of the Borel-Cantelli lemma and the strong law of large numbers[J]. Ann. Math. Statist., 1965,36(4), 800-807.
  • 7Petrov V V. Sums of independent random variables [M]. New York:Springer, Berlin-Heidelberg, 1975.
  • 8Rosenbllat R M.Some theorems concerning the strong law of large numbers for nonhomogeneous Markov chians. Annals of Mathematical Statistics . 1964
  • 9Bowermen B,David H T,Isaacson D.The convergence of Cesaro averges for certain nonstationary Markov chains. Stochastic Processes and Their Applications . 1977
  • 10Liu Guoxin,Liu Wen.On the strong law of large numbers for functionals of countable nonhomogeneous Markov chains. Stochastic Processes and Their Applications . 1994

共引文献8

同被引文献23

  • 1杨卫国.非齐马氏链熵率存在定理[J].数学的实践与认识,1993,23(2):86-90. 被引量:13
  • 2潘平俊,冯新喜,赵晓明.机动目标模型研究与发展综述[J].指挥控制与仿真,2006,28(3):12-15. 被引量:20
  • 3杨卫国,吴小太,王豹.一类隐马尔可夫模型的若干极限性质[J].江苏大学学报(自然科学版),2006,27(5):467-470. 被引量:3
  • 4Leroux B G. Maximum-likelihood estimation for hidden Markov models[J]. Stochastic process Appl., 1992, 40: 127-143.
  • 5Genon-Catalot V, Laredo C. Leroux's method for general hidden Markov models[J]. Stochastic process Appl., 2006, 116: 222-243.
  • 6Bickel P J, Ritov R, Ya'acov T R. Asmptotic normality of the maximum-likelihood estimator for general hidden markov models[J]. Ann. Statist., 1998, 26(4): 1614-1635.
  • 7Maxwell M, Woodroofe M. A local limit theorem for hidden Markov chains[J]. Stat. Probab. Letts., 1997, 32: 125-131.
  • 8Beatriz L, Pilar L, Alberto L. Dynamic graphical models and nonhomogeneous hidden Markov models[J]. Statistics Probability Letters, 2000, 49: 377-385.
  • 9Bryson C, Bates S. Stochastic downscaling of numerical climate model simulations[J]. Environmental Modelling Software, 1998, 13: 325-331.
  • 10Liu W, Yang W G. A class of strong limit theorems for the sequences of arbitrary random variables[J]. Stat. Probab. Letts., 2003, 64: 121-131.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部