期刊文献+

高考命题中试题难度预测方法探索 被引量:21

Research on Predictive Methods of Item Difficulty in the College Entrance of Examination
下载PDF
导出
摘要 运用命题教师主观评估、多元线性回归分析和BP神经网络建模三种预测方法,对高考命题过程中试题的难度进行预测,并对三种方法的预测性能进行比较。结果发现,三种预测方法均具有较高的预测准确度,其中,BP神经网络预测模型对试题难度的预测准确度相对更高,误差相对更小。 A predictive method of item difficulty was constructed via teacher's subjective evaluation, regression analysis and neural network modeling respectively. The optimum method stands out after com- parison of the three kinds of predictive methods. The conclusions indicated that the three methods all have accuracy to prediction of item difficulty. According to the indications of relative errors, absolute errors and average errors, the BP neural network showed a better result of the prediction of item difficulty.
作者 毛竞飞
出处 《教育科学》 CSSCI 北大核心 2008年第6期22-26,共5页 Education Science
关键词 高考 试题难度 预测 神经网络 The college entrance of examination, Item difficulty, Prediction, Neural network
  • 相关文献

参考文献6

二级参考文献17

  • 1余嘉元.运用联结主义模型研究知觉边界效应问题[J].心理学报,2001,33(2):123-126. 被引量:6
  • 2Frank B Baker. Item Response Theory:parameter estimate technique[M].Marcel Dekker, Inc, 1992:57~62,104~107,178~179
  • 3Susan E Embretson,Steven P.Reise Item Response Theory for psychologists,Lawrence Erlbaum Associates[M].Publishers,2000:5
  • 4胡守仁 余少波 戴葵.神经网络导论[M].北京:国防科技大学出版社,1998..
  • 5Hambleton R K. Item Response Theory: Principles and Applications. Boston: Kluwer-Nijhoff Pub,1985.58~63
  • 6Baker F B. Item Response Theory: Parameter Estimation Techniques. New York: M.Dekker,1992.66~71
  • 7McLead P. Introduction to Connectionist Modeling of Cognitive Processes. New York: Oxford University Press, 1998.256~261
  • 8Mahwah N J,Erlbaum L L. Localist Connectionist Approaches to Human Cognition. New York: Oxford University Press,1998,188~192
  • 9Anderson, J. A. An Introduction to Neural Networks. Cambridge:The MIT Press, 1995,136~143.
  • 10Haykin S S. Neural Networks: A Comprehensive Foundation. Upper Saddle River, N. N., Press Hall, 1999. 178~181

共引文献38

同被引文献232

引证文献21

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部