摘要
运用命题教师主观评估、多元线性回归分析和BP神经网络建模三种预测方法,对高考命题过程中试题的难度进行预测,并对三种方法的预测性能进行比较。结果发现,三种预测方法均具有较高的预测准确度,其中,BP神经网络预测模型对试题难度的预测准确度相对更高,误差相对更小。
A predictive method of item difficulty was constructed via teacher's subjective evaluation, regression analysis and neural network modeling respectively. The optimum method stands out after com- parison of the three kinds of predictive methods. The conclusions indicated that the three methods all have accuracy to prediction of item difficulty. According to the indications of relative errors, absolute errors and average errors, the BP neural network showed a better result of the prediction of item difficulty.
出处
《教育科学》
CSSCI
北大核心
2008年第6期22-26,共5页
Education Science
关键词
高考
试题难度
预测
神经网络
The college entrance of examination, Item difficulty, Prediction, Neural network