期刊文献+

yo-yo运动的振荡神经网络控制 被引量:3

yo-yo Motion Control by Oscillatory Neural Networks
下载PDF
导出
摘要 在分析简单的振荡网络基本构成基础上,提出了一种用振荡神经网络对yo-yo运动实现闭环控制的具体构架.给出了系统中所采用的神经网振荡器——抑制性锁相环、开关信号发生器和机器臂参考信号发生器等环节的数学模型.建立了实现yo-yo运动闭环控制的实时控制系统,并通过实验对该控制方法进行验证.结果表明,振荡神经网络实现yo-yo运动闭环控制的方法是可行的. Based on various coupling forms of oscillatory neural networks, a simple iPLL (inhibitory phaselocked loop) oscillator was proposed to control the motion of a yo-yo. The proposed control has been successfully implemented. The experimental results show that closed-loop control of yo-yo motion with iPLL is possible. This provides a model-free alternative to the model-based control of such tasks.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第12期1939-1942,共4页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(50475025) 教育部留学回国人员基金资助
关键词 振荡神经网络 中枢模式发生器 yo-yo运动 oscillatory neural networks central pattern generator (CPG) yo-yo motion
  • 相关文献

参考文献8

  • 1Cohen A H, Rossignol S, Grillner S. Neural control of rhythmic movements in vertebrates [M]. Canada: John Wiley, 1988.
  • 2Grillner S. Locomotion in vertebrates: Central mechanisms and reflex interaction [J]. Physiological Reviews, 1975, 55(2): 247-304.
  • 3Cao M, Atsuo K. A design method of neural oscillatory networks for generation of humanoid biped walking patterns [C]//Proe of the IEEE International Conference on Robotics and Automation. Leuven, Belgium: IEEE Press, 1998: 2357-2362.
  • 4Kimura H, Akiyama S, Sakurama K, Realization ol dynamic walking and running of quadruped using neural oscillators [J]. Autonomous Robots, 1999, 7(3) : 247-258.
  • 5Chiel H J, Beer R D, Quinn R D, etal. Robustness of a distributed neural network controller for locomotion in a hexapod robot [J]. IIEEE Trans Robot Automat, 1992, 8(3): 293-303.
  • 6Zacksenhouse M. Sensitivity of basic oscillatory mechanism for pattern generation and detection[J].Biological Cybernetics, 2001, 85: 301-311.
  • 7Hashimoto K, Noritsugu T. Modeling and control of robotic yo-yo with visual feedback [C]//Proc IEEE International Conference on Robotics and Automation. Minneapolis, MN: IEEE Press, 1996: 2650-2655.
  • 8Jin H L, Zacksenhouse M. Oscillatory neural networks for robotic yo-yo control [J]. IEEE Trans Neural Networks, 2003, 14(2) :317-325.

同被引文献30

  • 1Hashimoto K,Noritsugu T.Modeling and control of robotic yoyo with visual feedback[C]//Proceedings of IEEE Int Conf Robotics and Automation Minneapolis,1996:2650-2655.
  • 2Jin H L,Ye Q,Zacksenhouse M.Return maps,parameterization,and cycle-wise planning of yo-yo playin[J].IEEE Trans Robotics,2009,25 (2) :438-445.
  • 3Milam M B,Mushambi K,Murray R M.A new computational approach to real-time trajectory generation for constrained mechanical systems[C]//Proceedings of the IEEE Conference on Decision and Control, Sydney, 2000 : 845-851.
  • 4Petit N,Milam M B,Murray R M.Inversion based constrained trajectory optimization[C]//Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems, St.Petersburg, 2001 : 1211-1216.
  • 5Jin H L,Zacksenhouse M.Yoyo dynamics:Sequence of collisions captured by a restitution effect[J].Journal of Dynamic Systems,Measurement and Control, 2002,124 (3) : 390-397.
  • 6Murray R M,John H.Online control customization via optimization-based control[J].Software-enabled control:Information Technology for Dynamical Systems,2003 : 1-21.
  • 7Fliess M,Levine J,Martin P,et al.On differentially flat nonlinear systems[J].Comptes Rendus des Seances de l'Academie des Sciences Serie I, 1992,315 : 619-624.
  • 8Fliess M,Levine J,Martin P,et al.Flatness and defect of non-linear systems:Introductory theory and examples[J].International Journal of Control, 1995,61(6) : 1327-1360.
  • 9de Boor C.A practical guide to splines[M].New York:Spring-Verlag, 1978.
  • 10Misovec K,Inanc T,Wohletz J,et al.Low-observable nonlinear trajectory generation for unmanned air vehicles[C]//Proceedings of the 42nd IEEE Conference on Decision and Control,Hawaii, 2003 : 3103-3110.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部