期刊文献+

二维细胞在剪切流中的运动特性 被引量:2

Modeling two-dimensional cell deformation in shear flow
下载PDF
导出
摘要 主要模拟二维细胞在剪切流中的运动特性。计算过程采用浸入边界法,将细胞模化成Navier-Stokes方程中的力源,而不是真实物体。假设细胞的初始形状为椭圆,细胞内外流体粘性相同,细胞膜的弹性力模型选用E-S模型。本文模拟四种不同真圆度情况下细胞的形变情况,观测到初始阶段细胞沿着长轴方向做拉伸和旋转运动,达到稳定状态后细胞作类坦克履带式运动;并且发现细胞达到稳定状态所需要的时间随真圆度的增加而增加,而细胞的稳态倾角随真圆度的增加而减少。 The deformation of two-dimensional cell in shear flow is investigated. The immersed boundary method, where the immersed boundary is modeled as a force source instead of a read body, is utilized to simulate the cell motion. An elliptical shape is taken as the initial shape of the cell. The Evans-Skalas elasticity law is chosen for the description of the membrane mechanics and it is assumed that the viscosity ratio between the interior and exterior fluids of the cell is unity. Several cases for different circularities are simulated to study the deformation of the cell. It is observed that the cell elongates along the long axis as well as rotates round the origin first and the tank-treading motion begins when the cell reaches its steady state. It is also found out that as the circularity increases, the inclination of the cell at steady state decreases and the time required to reach the steady state increases.
出处 《应用力学学报》 EI CAS CSCD 北大核心 2008年第4期547-550,共4页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(No.10472070) 上海市重点学科建设项目(B206)
关键词 浸入边界法 细胞运动 剪切流 E-S弹性定律 immersed boundary method, cell deformation, shear flow, Evans-Skalas elasticity law.
  • 相关文献

参考文献19

  • 1Schmid-Schonbein H, Wells R. Fluid drop-like transition of erythrocytes under shear[J]. Science, 1969, 165:288-291.
  • 2Fischer T M, Stohr-liesen M, Schmid-Schonbein H. The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow[J]. Science, 1978, 202: 894-896.
  • 3Kholef I A, Weymann H D. Motion of a single red blood cell in plane shear flow[J]. Biorheology, 1974, 11: 337-348.
  • 4Sugihara M, Niimi H. Numerical approach to the motion of a red blood cell in Couette flow[J]. Biorheology, 1984, 21:734- 749.
  • 5Nimmi H, Sugihara M. Cyclic loading on the red cello membrane in a shear flow: a possible cause of hemolysis[J]. J Biomeeh Eng, 1985, 107: 91-95.
  • 6Zahalak G I, Rao P R, Sutera S P. Large deformation of a cylindrical liquid-filled membrane by a viscous shear flow[J]. J Fluid Mech, 1987, 179: 283-305.
  • 7Keller S R, Skalak R. Motion of a tank-treading ellipsoidal particle in a shear flow[J]. J Fluid Mech, 1982, 120:27-47.
  • 8Sutera S P, Pierre P R, Zahalak G. I. Deduction of intrinsic mechanical properties of the erythrocyte membrane from observations of tank-treading in the rheoseope[J]. Biorheology, 1989, 26: 177-197.
  • 9Barthes-Biesel D, Rallison J M. The time-dependent deformation of a capsule freely suspended in a linear shear flow[J]. J Fluid Mech, 1981, 113.-251-267.
  • 10Barthes-Biesel D, Sgaier H. Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear flow[J]. J Fluid Mech, 1985,160:119-135.

同被引文献7

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部