期刊文献+

具有刚性约束随机非线性动力系统擦边现象的研究 被引量:1

Grazing Phenomena of Stochastic Duffing-van der Pol one-Sided Constranint System
下载PDF
导出
摘要 利用Chebyshev多项式逼近法在单边约束条件下将带有随机参数的Duffing-van der Pol系统转化为与之等价的确定性系统,然后利用确定性系统的数值方法,研究了系统在擦边附近的动力学行为。研究表明,随机非光滑动力系统由擦边到混沌运动过程中,存在一个擦边区间。当控制参数完全经过这个区间时,随机系统才变为和确定性系统类似的混沌运动,而在这个区间内,随机系统经过一个由擦边运动到混沌再到擦边运动的反复过程。同时作者还发现,随机非光滑动力系统在擦边附近存在由随机因素诱发的倍周期分岔现象。 Chebyshev polynomial approximation is chosen to convert the Duffing-Van der Pol system with a random parameter to an equivalent deterministic system. The system behavior system nearby the grazing condition is researched with numerical method for determining. The result shows that there is a grazing area in the stochastic system occurring in the process of the system motion from grazing to chaos. It demonstrates that when the controls parameter completely passes the area the motion of stochastic system get chaos as the deterministic. In the area, the behavior of the stochastic system transforms from grazing to chaos repeated.
机构地区 西北工业大学
出处 《应用力学学报》 CAS CSCD 北大核心 2008年第4期551-555,共5页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10472091 10332030)资助课题
关键词 非光滑动力系统 随机Duffing-van der Pol系统 擦边现象 单边约束 non-smooth dynamic system, stochastic Duffing-van der Pol system, grazing phenomena, onesided constraint.
  • 相关文献

参考文献11

  • 1胡海岩.分段线性系统动力学的非光滑分析[J].力学学报,1996,28(4):483-488. 被引量:33
  • 2Shaw S W. A periodically forced piecewise linear oscillator[J]. Journal of Sound and Vibration, 1983,90(1) : 129-155.
  • 3Shaw S W, Forced vibrations of a beam with one-sided ampli- tude constraint: theory and experiment. Journal of Sound and Vibration[J]. 1985,92(2) : 199-212.
  • 4Weger J, Water W, Molenaar J . Grazing impact oscillations [J].Physical Review E, 2000,62(2) :2030-2041.
  • 5Virgin L N, Begley C L. Grazing bifurcations and basins of attraction in an impact-friction oscillator[J]. Pbysica D, 1999, 130:43-57.
  • 6Thota P, Dankowicz H. Continuous and discontinuous grazing bifurcations in impacting oscillators[J].Physica D, 2006,214: 187-197.
  • 7Fang T, Leng X L, Song C Q. Chebyshev polynomial approximation for dynamical response problem of random system[J].Journal of Sound and Vibration, 2003, 266: 198.
  • 8Fang T, Leng X L, Ma X P, et al. Lambda-PDF aad Gegenbauer Polynomial Approximation for Dynamic Response Problems of Random Structures[J].Acta Mechanica Solida Sinica, 2004, 20 (3): 292-298.
  • 9马少娟,徐伟,李伟,靳艳飞.基于Chebyshev多项式逼近的随机van der Pol系统的倍周期分岔分析[J].物理学报,2005,54(8):3508-3515. 被引量:24
  • 10孙晓娟,徐伟,马少娟.含有界随机参数的双势阱Duffing-van der Pol系统的倍周期分岔[J].物理学报,2006,55(2):610-616. 被引量:16

二级参考文献16

共引文献72

同被引文献4

  • 1Bernardo M Di,Budd C J,Champneys A R.Physical Review Letters[J].2001,86(1):2553-2556.
  • 2Utkin V I.Sliding Modes in Control Optimization[M].New York:Springer-Verlag,1992.
  • 3Hsu C S.A generalized theory of cell-to-cell mapping for nonlinear dynamical systems[J].ASME J.Appl.Mech.,1981,48:634-642.
  • 4Filippov A F.Differential Equations with Discontinuous Righthand Sides[M].New York:Springer-Verlag,1988.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部