摘要
从悬链线方程出发,以节点坐标和无应力索长作为未知量,推导了增量型索单元的刚度方程,提出了悬索桥在恒载作用下初始线形和无应力索长的计算公式及基于Newton-Raphson的求解方法。算例分析表明本文方法具有较高的精度。
From analytical solution of an elastic catenary cable, an incremental equilibrium equation of finite element methods for a single cable is derived, which includes the nodal coordinates and the unstressed element length as unknowns. The geometry of target configuration and the unstressed length of the cable segment of a cable-supported structures under dead loads is formulated with the incremental equilibrium equations and calculated by the nonlinear analytical procedure with the Newton-Raphson method. The numerical results show the accuracy and effectiveness.
出处
《应用力学学报》
EI
CAS
CSCD
北大核心
2008年第4期627-631,共5页
Chinese Journal of Applied Mechanics
基金
国家自然科学基金(10572046)
高等学校博士点专项科研基金(20030359005)
安徽省自然科学基金(050440504)
关键词
悬链线
非线性有限元
悬索桥
线形
无应力长度
catenary, nonlinear finite elements, suspension bridges, cable curve, unstressed cable length.