期刊文献+

一种双足机器人实时步态规划方法及相关数值算法 被引量:7

A Realtime Gait Programming Method for Biped Robot and Its Related Numerical Algorithm
下载PDF
导出
摘要 针对步行双足机器人实时步态规划问题,提出了一种改进的非线性模型预测控制(NMPC)方法.采用扩展的关节坐标,将单腿支撑相(SSP)和双腿支撑相(DSP)统一表示为一个非线性动力学模型.通过对SSP和DSP的3个阶段设定运动学和动力学虚拟约束,将复杂实时步态规划问题转化为4个以预测时域内控制量二次型为代价函数的NMPC问题.采用直接法将连续优化问题参数化为有限维优化问题,并采用惩罚函数法将状态变量约束转化为代价函数中的惩罚项,从而得到能够用渐进二次规划(SQP)求解的有限维静态优化问题.仿真结果表明,应用该方法对BIP机器人模型进行实时步态规划,实现了包含足部转动的动态步行,且机器人满足稳定性条件,不发生侧滑,从而证明了该方法的有效性和可实现性. A modified nonlinear model predictive control (NMPC) strategy is proposed for the realtime gait programming problem of biped robot. Extended joint coordinates are used to represent both the single support phase (SSP) and the double support phase (DSP) as an identical nonlinear dynamical model. Through setting kinetic and kinematic virtual constraints to SSP and the three sub-phases of DSP, the complex realtime gait programming problem is transformed into four NMPC problems which use the quadratics of inputs in the predictive horizon as the cost functions. Direct method is used to parameterize the continuous optimization problem as a finite dimensional optimization problem, penalty function method is used to transform the state constraints into the penalty items in cost function, and the finite dimensional static optimization problem which can be solved with sequential quadratic programming (SQP) is acquired. Simulation has been made to use the presented method to implement realtime gait programming of BIP robot, and the results show that dynamic walking (including foot rotation) is realized, and biped stability is satisfied without any side slipping. So effectiveness and applicability of the presented approach are verified.
出处 《机器人》 EI CSCD 北大核心 2008年第6期521-527,共7页 Robot
基金 国家863计划资助项目(2006AA04Z201)
关键词 双足机器人 非线性模型预测控制 实时步态规划 biped robot nonlinear model predictive control (NMPC) real-time gait programming
  • 相关文献

参考文献12

  • 1Yagi M, Lutnelsky V. Local on-line planning in biped robot locomotion amongst unknown obstacles[J]. Robotica, 2000, 18(4): 389-402.
  • 2Wieber P B, Chevallereau C. Online adaptation of reference trajectories for the control of walking systems[J]. Robotics and Autonomous Systems, 2006, 54(7): 559-566.
  • 3Chevallereau C, Aoustin Y. Optimal reference trajectories for walking and running of a biped robot[J]. Robotica, 2001, 19(5): 557-569.
  • 4Heliot R, Espiau B. Online generation of cyclic leg trajectories synchronized with sensor measurement[J]. Robotics and Autonomous Systems, 2008, 56(5): 410-421.
  • 5Azevedo C, Poignet P, Espiau B. Moving horizon control for biped robots without reference trajectory[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2002. 2762-2767.
  • 6Azevedo C, Poignet P, Espiau B. Artificial locomotion control: From human to robots[J] .Robotics and Autonomous Systems, 2004, 47(4): 203-223.
  • 7Bessonnet G, Chesse S, Sardain E Optimal gait synthesis of a seven-link planar biped[J]. The International Journal of Robotics Research, 2004, 23(10-11): 1059-1073.
  • 8Azevedo C, Amblard B, Espiau, B, et al. A Synthesis of Bipedal Locomotion in Human and Robots[R]. France: INRIA, 2004.
  • 9Findeisen R, Allgower E An introduction to nonlinear model predictive control[DB/OL], http://saba.kntu.ac.irleecdltaghiradlE%20books/TOC/An%20introduction%20to%20nonlinear%20 model%20predictive%20control.pdf, 2002/2008.
  • 10Diehl M, Bock H G, Schloder J P, et al. Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations[J]. Journal of Process Control, 2002, 12(4): 577-585.

同被引文献59

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部