期刊文献+

二维Biot固结方程的自然单元法求解 被引量:1

Natural Element Method for Biot Plane Consolidation Analysis
下载PDF
导出
摘要 为了使自然单元法能够应用于土体等多孔介质的流固耦合计算,通过结合Biot固结理论及自然单元法自身特点,利用经典变分原理推导了固结微分方程的离散形式,并针对二维问题编制了相应的计算程序.算例结果表明,自然单元法的结果与解析解吻合良好,其精度高于有限单元法.从而验证了自然单元法在固结分析中的正确性,拓展了自然单元法的适用范围. The natural element method (NEM) is a novel numerical computational method for solving partial differential equation. It is built upon the notion of the natural neighbor interpolation, which is based on Voronoi diagram and Delaunay triangulation. This paper focused on its application in solving Biot consolidation equation. The discrete form of control equation was obtained with classical variation principle; the algorithm routine for 2D condition was also elaborated. The results of numerical examples show that the results of NEM are in concordance with the analytical solution and the precision is higher than that of FEM.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第11期1880-1883,1887,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(50679041)
关键词 自然单元法 BIOT固结方程 自然相邻插值 经典变分原理 natural element method (NEM) Biot consolidation equation natural neighbor interpolation classical variation principle
  • 相关文献

参考文献9

二级参考文献15

  • 1戴斌,王建华.自然单元法原理与三维算法实现[J].上海交通大学学报,2004,38(7):1222-1224. 被引量:9
  • 2黄传志,港口工程,1991年,6期
  • 3黄传志,岩土工程学报,1991年,13卷,1期
  • 4魏汝龙,软粘土的强度和变形,1987年
  • 5黄文熙,土的工程性质,1983年
  • 6Sukumar N, Moran B, Belytschko T. The nature element method in solid mechanics [J]. Int J Num Meth Eng, 1998,43:839-887.
  • 7Lasserre J B. An analytical expression and algorithm for the volume of a convex polyhedron in Rn[J]. J of Opt Theory and Appl, 1983,39: 363- 377.
  • 8Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids [J]. Nature, 1995,376: 655 - 660.
  • 9Lasserre J B, Zeron E S. An laplace transform algorithm for the volume of a convex polytope [J]. J ACM, 2001,48:1126-1140.
  • 10宋天霞 等.非线性结构有限元计算[M].武汉:华中理工大学出版社,1996..

共引文献45

同被引文献22

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部