期刊文献+

一种基于隐马尔可夫模型的实时安全评估方法 被引量:4

A Real-time Security Assessment Algorithm Based on HMM
下载PDF
导出
摘要 现有的安全评估方法大部分是基于系统设计和周期性数据进行人工分析的,针对这些方法实时性差的问题,将隐马尔可夫模型(HMM)应用于网络安全评估中,提高了安全评估的实时性.该方法的优点在于可以利用现有的网络监控和入侵检测系统进行个体或大型网络的安全评估,使用多代理系统结构,根据代理软件搜集到的观察信息序列,得知隐藏的安全状态,最后结合具体实例和实验数据说明了该模型的可行性及高实时性. Current risk assessment methodologies focus on manual risk analysis of networks during system design or through periodic reviews. Most existing approaches are not suitable for real - time use. In this paper, we introduce an approach to network security assessment which is based on Hidden Markov Models to improve the ability of real - time. The benefit of our approach is the ability to enable the assessment of risk building upon existing network monitoring and intrusion detection systems, both on a system -wide level, as well as for individual objects. We assume a muhiagent system architecture, can know hidden security status according to the observations sequence, every agent receive and process the observations provided by the sensors, and the information system or network security is dynamically evaluated based on these data. Finally, the approach is evaluated using real -life data, to illustrate its feasibility and high real -time capability.
出处 《哈尔滨理工大学学报》 CAS 2008年第6期42-45,共4页 Journal of Harbin University of Science and Technology
关键词 安全评估 入侵检测 隐马尔可夫模型 security assessment intrusion detection system hidden Markov model
  • 相关文献

参考文献5

  • 1ASHISH Gehani, GERSHON Kedem. Real- time Risk Management. Recent Advances in Intrusion Detection:[ C ]//7th International Symposium, (RAID 2004 ), Sophia Antipolis, France. Springer, 2004.
  • 2LAWRENCE R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition[ J]. Proceedings of the IEEE, 1989:77 (2) :21 - 25.
  • 3ANDR'E Ames, KARIN Sallhammar, KJETIL Haslum,et al. Real -time risk Assessment with Network Sensors and Intrusion Detection Systems [ C ]// In International Conference on Computational Intelligence and Security ( CIS 2005 ), 2005.
  • 4OURSTON D, MATZNER S, STUMP W, et al. Applications of Hidden Markov Models to Detecting Multi - stage Network Attacks [ C ]//Proceedings of the 36th Hawaii International Conference on System Sciences ( HICSS ), Applied Research Laboratories University of Texas at Austin, 2003.
  • 5杨新旭,王长山,王东琦,郑丽娜.基于隐马尔可夫模型的入侵检测系统[J].计算机工程与应用,2005,41(12):149-151. 被引量:9

二级参考文献5

  • 1Mukkamala S,Janoski G,Sung A H.Intrusion Detection Using Neural Networks and Support Vector Machines[C].In:Proceedings of IEEE International Joint Conference on Neural Networks,2002:1702~1707.
  • 2Dit-Yan Yeung,Yuxin Ding. Host-based intrusion detection using dynamic and static behavioral models[J].Pattern Recognition,2003 ;36:229~243.
  • 3S Jha, K Tan, RA Maxion. Markov Chains, Classifiers, and Intrusion Detection[C].In: Computer Security Foundations Workshop, 2001 Proceedings 14th IEEE,2001.
  • 4Alexandr Seleznyov,Vagan Terziyan,Seppo Puuronen.Temporal-Probabilistic Network Approach for Anomaly Intrusion Detection[C].In:12th Annual Computer Security Incident Handling Conference,Chicago,USA,2000.
  • 5卢坚,毛兵,孙正兴,张福炎.一种改进的基于说话者的语音分割算法[J].软件学报,2002,13(2):274-279. 被引量:17

共引文献8

同被引文献32

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部