期刊文献+

椎间盘组织工程化的研究现状

Progress in intervertebral disc tissue engineering
下载PDF
导出
摘要 椎间盘组织工程是通过在体外构建完整的椎间盘组织,然后植入原有退行性变的椎间盘以达到治疗的目的。研究主要集中在椎间盘细胞的培养、组织工程支架的选择、椎间盘组织的构建与植入等3方面。目前对细胞培养的常用方式主要有3种,而进行微重力三维培养,不仅符合人体的立体结构而且可以减少培养液对细胞产生的机械剪切力,克服重力沉降引起的接触限制,能够更好的促进细胞生长,对椎间盘细胞培养则是一种新的尝试;组织工程支架种类繁多,都有其自身的优缺点,尚无公认的最合适的支架材料,在此方面仍需要进一步的研究;构建完整的椎间盘组织并进行体内植入已经取得动物实验的成功,表明组织工程学培养的椎间盘细胞植入退行性变的椎间盘内的确有部分逆转椎间盘退行性变的作用。 Intervertebral disc tissue engineering is achieved by means of establishing complete intervertebral disc tissue in vitro and then implanting it to the primary degenerative intervertebral disc, thus conducting the treatment. Nowadays the research mainly focuses on the cultivation of intervertebral disc cell, the selection of the tissue engineering scaffold, the establishment and implantation of the intervertebral disc tissue engineering and so on. Recently there are three common ways to cultivate cell. The cell cultivation under the circumstance of zero-gravity and three-dimension not only accords the human being's natural three-dimensional structure, but also could reduce the mechanical sheafing force of the medium and overcome the touching restriction caused by the gravity sedimentation. It could make cell growth better and that is a new attempt to cultivate intervertebral disc cell. There are many species of scaffold of tissue engineering, and everyone has the advantage and disadvantage. Today none of these scaffold materials are accepted as the most suitable one so that it needs more and more study in these aspects. To establish complete intervertebral disc tissue and conduct implantation have already succeed in animal experiment. It is shown that implanting intervertebral disc cell which is cultivated by tissue engineering to degenerative intervertebral disc could partly reverse the degeneration.
作者 于占革 李岩
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2008年第50期9937-9940,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 黑龙江省攻关项目(GC06C414)~~
  • 相关文献

参考文献35

  • 1Paesold G, Nerlich AG, Boos N.Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J 2007;16(4): 447-468
  • 2Anderson DG, Albert TJ,Fraser JK,et al.Cellular therapy for disc degeneration.S pine 2005 ;30 (17): 14-19
  • 3Brown RQ, Mount A, Burg KJ.Evaluation of polymer scaffolds to be used in a composite injectable system for intervertebral disc tissue engineering. J Biomed Mater Res A 2005;74(1):32-39
  • 4Iatridis JC, MacLean JJ, Roughley PJ.Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Joint Surg Am 2006;88 Suppl 2:41-46
  • 5Alini M, Li W, Markovic E et al.The Potential andLimitations of a Cell-Seeded CoUagen/Hyaluronan Scaffold to Engineer an Intervertebral Disc-Like Matrix.Spine 2003;28:446-454
  • 6Iwashina T, Mochida J,Miyazaki T.Low-intensity pulsed ultrasound stimulates cell proliferation and proteoglycan production in rabbit intervertebral disc cells cultured in alginate.Biomaterials. 2006;27(3): 354-361
  • 7Gruber HE,Hanley ENJr.Human disc cells in monolayer vs 3D culture: Cell shape,division and matrix forrnation.BMC Musculoskelet Disord 2000;1(1):1
  • 8Sato M, Kikuchi T, Asazuma T, et al.Glycosaminoglycan, accumulation in primary culture of rabbit intervertebral disc cells.Spine 2001;26: 2653-2660
  • 9Reza AT, Nicoll SB.Hydrostatic pressure differentially regulates outer and inner annulus fibrosus cell matrix production in 3D scaffolds. Ann Biomed Eng 2008;36(2):204-213
  • 10Sato M,Asazuma T, Ishihara M,et al.An atelocollagen honeycombshaped scaffold with a membrane seal(ACHMS-scaffold) for the culture of annulus fibrosus cells from an intervertebral disc.J Biomed Mater ResA 2003;64:248-256

二级参考文献24

  • 1Langer R S, Vaeanti T P. Tissue engineering. Science, 1993,260:920 ~ 925.
  • 2Li R K, Yau T M, Weisel R D, et al. Construction of bioengineering cardiac graft.J Torac Cardiovasc Surg,2000,119(2) :366 ~ 375.
  • 3Molnar G, Schroedl N A, Gonda S, et al. Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell Dev. Biol.Anim. 1997,33(5) :386 ~ 342.
  • 4Goodwin T J,Prewett T L,Wolf D A,et al. Reduced shear stress:a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J Cell Biochem,1993,51(4) :301 ~ 311.
  • 5Freed L E, Vunjak-Novakovic G, Langer R. Cultivation of cell-polymer cartilage implants in bioreaetors.J Cell. Biochem, 1993,51(6) :257 ~ 263.
  • 6Harding S E, Davies C H, Wynne D G, et al. Contractile function and response to agonists in myocytes from failing human heart. Eur Heart J,1994,15(3) :35 ~ 41.
  • 7Freed L E, Vunjak-Novakovic G. Microgravity tissue engineering. In Vitro Cell Dev Biol, 1997,33(5) :381 ~ 385.
  • 8Akins R E, Boyce R A, Madonna M L, et al. Cardiac organogenesis in vitro: Reestablishment of three-dimensional tissue architecture and function by dissociated ventricular cells. Tissue Engineering,1999,5(2) : 103 ~ 109.
  • 9Mikos AG, Thorsen A J, Czerwonka LA, et al. Preparation and characterization of poly(L- lactic acid) foams. Polymer, 1994,35: 1068-1077.
  • 10Lang MD, Bei JZ, Wang SG. Synthesis and characterization of polycaprolactone/poly(ethylene oxide)/polylactide tri - component copolymers. J Biomater Sci, 1999, 4:501-512.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部