期刊文献+

铁粉的高速压制成形 被引量:20

High velocity compaction of ferrous powder
下载PDF
导出
摘要 采用高速压制技术制备铁基制品,探讨了冲击能量及冲击速度与冲击行程之间的关系,并研究了冲击能量、压制方式对生坯密度、最大冲击力、脱模力和径向弹性后效的影响.结果表明:在高速压制过程中,冲击能量与冲击行程呈线性关系,而冲击速度与冲击行程呈抛物线关系.生坯密度随着冲击能量的增加而逐渐增大.单次压制时,当冲击能量增加到6510 J时,生坯密度达到7.336 g/cm^3,其相对密度约为97%.在总冲击能量相同的情况下,两次压制制备出的试样生坯密度最大,三次压制的最小.在高速压制过程中,试样的脱模力及其径向弹性后效均远低于传统压制. Ferrous parts were prepared through high velocity compaction (HVC), the relationship between the impact energy, the impact velocity and the stroke length was investigated. The effects of impact energy and compaction methods on the green density, the maximal impact force, the withdraw force and the radial springback were discussed. The results showed that the impact energy was direct proportional to the stroke length and the impact velocity is parabolic to it. The green density increased with the impact energy increasing. In single impact the green density was 7.336 g/cm^3, relative density about 97%, when impact energy was 6510 J. For the same total impact energy the green density of specimen processed by double impacts was the best and that of specimen fabricated by triplex impacts was the lowest. The withdraw force and the radial springback of specimen produced by HVC were all lower than that of specimen processed by traditional compaction.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2008年第6期589-592,共4页 Chinese Journal of Materials Research
基金 国家973计划2006CB605207 教育部长江学者和创新团队发展计划12P407资助项目~~
关键词 材料合成与加工工艺 粉末冶金 生坯密度 高速压制 冲击能量 脱模力 synthesizing and processing technics, PM, green density, high velocity compaction, impact energy, withdraw force
  • 相关文献

参考文献17

  • 1F.Richard, HVC punches PM to new mass production limits, Metal Powder Report, 57(9), 26(2002)
  • 2R.L.Orban, New research directions in powder metallurgy, Romanian Reports in Physics, 56(3), 505(2004)
  • 3迟悦,果世驹,孟飞,杨霞,张恒,连玉栋.粉末冶金高速压制成形技术[J].粉末冶金工业,2005,15(6):41-45. 被引量:20
  • 4沈元勋,肖志瑜,温利平,潘国如,李元元.粉末冶金高速压制技术的原理、特点及其研究进展[J].粉末冶金工业,2006,16(3):19-23. 被引量:33
  • 5周晟宇,尹海清,曲选辉.粉末冶金高速压制技术的研究进展[J].材料导报,2007,21(7):79-81. 被引量:13
  • 6P.Skoglund, in 2001 International conference on Power Transmission Components, High density PM components by high velocity compaction, edited by A.Volker, Chu Chiulung, F.William, J.Jandeska, (Ypsilanti, Metal Powder Industries Federation, 2001) p.16
  • 7P.Skoglund, High density PM parts by high velocity compaction, Powder Metallurgy, 44(3), 199(2001)
  • 8P.Skoglund, in Advance in Powder Metallurgy & Particulate Materials-2002, High-Density PM Components by High Velocity Compaction, edited by A.Volker, Chu Chiulung, F.William, J.Jandeska, (New Jersey, Metal Powder Industries Federation, 2002) p.1
  • 9E.Caroline, Hoganas promotes potential of high velocity compaction, Metal Powder Report, 56(9), 6(2001)
  • 10F.Dore, L.Lazzarotto, S.Bourdin, High velocity compaction: overview of materials, applications and potential, Materials Science Forum, 534-536, 293(2007)

二级参考文献41

  • 1陈平,肖志瑜,朱权利,张文.数值模拟在粉末冶金中的应用概况[J].现代制造工程,2004(9):1-2. 被引量:9
  • 2于洋,Linnea Fordén.表面致密化——一种提高烧结齿轮性能的有效方法[J].粉末冶金技术,2005,23(1):62-74. 被引量:11
  • 3刘德顺,杨襄璧.锤与桩撞击产生的应力波[J].建筑机械,1995,15(5):31-34. 被引量:8
  • 4果世驹,迟悦,孟飞,杨霞.粉末冶金高速压制成形的压制方程[J].粉末冶金材料科学与工程,2006,11(1):24-27. 被引量:24
  • 5[1]Orban P L. New Research Directions in powder metallurgy [ J ]. Romanian Reports in Physics, 2004,56 (3): 505 -516.
  • 6[2]HVC punches PM to new mass production limits [J].Metal Powder Report,2002,57(9):26- 31.
  • 7КобринВН,МещеряковАН,ГречкаВД.ВысокоскороcтноеФормованиеПлокированногоГрафиттогоПорощка[J].ПорощкотаяМеталлургия,1982,(3):21-25.
  • 8[4]Sano Yukio, Miyagi Kiyohiro. Dinamic compation and the effect of contained within powder pores[J]. Powder Met,1984,20(2): 115-118.
  • 9РещетниковВФ,СердюкГГ,СвистунЛИ.Напряжениевпуансонеприударноепрессованииметаллическкихпорощков[J].ПорощковаяМеталлургия,1985,(6):22-26.
  • 10РещетниовВФ,СвистунЛИ,СердюкГГ.Тепловыделениеприударномпрессованиижелезногопорощка[J].ПорощковаяМеталлургия,1983,(1):5-7.

共引文献47

同被引文献202

引证文献20

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部