摘要
A green method for separating and enriching trace tetracycline (TC) in environment water by Aqueous Two-phase Gas Floatation Spectrophotometry has been proposed, the principium was discussed. In this paper, the hydrophobic complex composed of Mg(II) and TC was floated into organic phase under the optimal conditions: pH=10, the floatation equipment is home-made, n-propyl alcohol as the organic solvent, sodium chloride as the separating phase reagent. The data were obtained by spectrophotometry after floatation; The linear regression equation is A=2.33×10^5C(mol/L)+0.2179, linear range is from 3.77×10^-7mol/L to 6.32×10^-5 mol/L, respectively, with thecorrelation coefficient (r) better than 0.9997, relative recoveries is 99.7% to 100.3%, limit of detection was 4.29×10^-5mol/L, The method can be applied to analyse the trace TC in water sample, the result is better.
A green method for separating and enriching trace tetracycline (TC) in environment water by Aqueous Two-phase Gas Floatation Spectrophotometry has been proposed, the principium was discussed. In this paper, the hydrophobic complex composed of Mg(II) and TC was floated into organic phase under the optimal conditions: pH=10, the floatation equipment is home-made, n-propyl alcohol as the organic solvent, sodium chloride as the separating phase reagent. The data were obtained by spectrophotometry after floatation; The linear regression equation is A=2.33×105C(mol/L)+0.2179, linear range is from 3.77×10-7mol/L to 6.32×10-5mol/L, respectively, with the correlation coefficient (r) better than 0.9997, relative recoveries is 99.7% to 100.3%, limit of detection was 4.29×10-8mol/L, The method can be applied to analyse the trace TC in water sample, the result is better.
基金
National Nature Science Foundation Project (20777029)
Jiangsu Higher Education Institution Nature Science Foundation Project (07KJB610021)