期刊文献+

1Cr18Ni9Ti不锈钢焊接熔池的组织模拟 被引量:4

Microstructure simulation in welding lCrl8Ni9Ti steel
下载PDF
导出
摘要 运用晶界演化Grain boundary evolution模型,利用PHOENICS软件计算在不同焊接参数下1Cr18Ni9Ti不锈钢TIG焊接温度场,采用VB语言编制程序模拟了焊缝中柱状晶的生长。结果表明,熔池形状和尺寸影响了柱状晶的生长方向,熔池长宽比越大,晶粒的生长方向越垂直于焊缝中心,晶粒短而直;长宽比越小,熔池形状越接近圆形,晶粒的弯曲程度越大,晶粒长而弯。Grain boundary evolution模型能准确地模拟不锈钢焊缝中柱状晶的生长形态,与试验结果中的柱状晶的生长形态吻合较好。 The growth of columnar grain during the solidification of the 1Cr18Ni9Ti stainless steel weld metal for different welding parameters is simulated using the grain boundary evolution (GBE) modeling method. The shape and the size of the weld pool under different welding parameters are calculated using PHOENICS software. The simulated results show that the growing direction of the columnar grains is dependent on the shape of the weld pool. The straight and short grains tend to grow in direction perpendicular to the weld cen-terline if the length/width (L/W) of the weld pool is large and the curving and long grains grow toward the welding direction if the L/W ratio is small. The experimental results are found to be in good qualitative agreement with the simulated results.
出处 《焊接学报》 EI CAS CSCD 北大核心 2008年第12期13-16,共4页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(50505019)
关键词 GRAIN BOUNDARY evolution模型 组织模拟 焊缝凝固 不锈钢 grain boundary evolution model structure simulation weld solidification stainless steel
  • 相关文献

参考文献5

  • 1Yang Z, Elmer J W, Wong J, et al. Evolution of titaniumarc weldment macro and mierostructures-modeling and real time mapping of phase [J]. Welding Journal, 2000, 79(4): 97s-112s.
  • 2Shi Y, Chen D, Lei Y, et al. HAZ microstructure simulation inweldingof a ultra fine grain steel [J]. Computational Materials Science, 2004, 31(3-4): 379-388.
  • 3Gandin C A, Rappaz M, Tintillier R. 3-Dimentional simulation of the grain formation in investment castings [J]. Metallurgical Transactions, 1994, 25A(3) : 629 - 635.
  • 4Gandin C A, Rappaz M, Tintillier R. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification process [J]. Acta Materalia, 1994, 42(7): 2233-2246.
  • 5Bergmann H W, Mayer S. Texture evolution in laser beam welds undergoing the planar solidification mode[ C]// Cerjak H. Mathematical Modeling of the Weld Phenomena 4. London: The Institute of Materials, 1999: 166-183.

同被引文献28

  • 1黄安国,余圣甫,李志远.焊缝金属凝固组织元胞自动机模拟[J].焊接学报,2008,29(4):45-48. 被引量:21
  • 2朱鸣芳,陈晋,孙国雄,洪俊杓.枝晶生长的数值模拟[J].金属学报,2005,41(6):583-587. 被引量:19
  • 3谢致薇,白晓军,王国庆,李海江,杨元政,冉炜.NiTi形状记忆合金加热相变过程的DSC研究[J].金属热处理,2005,30(10):46-49. 被引量:5
  • 4Sen Luo,Miao Yong Zhu.A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method[J].Computational Materials Science.2013
  • 5H?kan Hallberg,Matti Ristinmaa.Microstructure evolution influenced by dislocation density gradients modeled in a reaction–diffusion system[J].Computational Materials Science.2013
  • 6Andrés Anca,Alberto Cardona,José Risso,Víctor D. Fachinotti.Finite element modeling of welding processes[J].Applied Mathematical Modelling.2010(2)
  • 7H. Yin,S.D. Felicelli.Dendrite growth simulation during solidification in the LENS process[J].Acta Materialia.2009(4)
  • 8Junjie Li,Jincheng Wang,Gencang Yang.Phase-field simulation of microstructure development involving nucleation and crystallographic orientations in alloy solidification[J].Journal of Crystal Growth.2007(1)
  • 9Yizhu He,Hanlin Ding,Liufa Liu,Keesam Shin.Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle[J].Materials Science & Engineering A.2006(1)
  • 10Y.C. Liu,F. Sommer,E.J. Mittemeijer.The austenite–ferrite transformation of ultralow-carbon Fe–C alloy; transition from diffusion- to interface-controlled growth[J].Acta Materialia.2006(12)

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部