摘要
对形如∑∞n=0anxkn+b(k∈,b∈)的幂级数,当其缺项的时候,不能直接用公式ρ=li mn→∞an+1an求其收敛半径与收敛区间(本文约定收敛区间不含端点),一般都是直接采用达朗贝尔(比值)判别法求其收敛半径与收敛区间.事实上,对这种幂级数只需先作一个变量代换,就可以采用公式法求解.本文给出了这种方法的理论证明,并将结论进行了推广,即利用变量代换与公式法同样可求形如∑∞anxkn+bs(k,s∈,b∈)形式的函数项级数的收敛区间.
For series like ↑∞∑↓n=0 anx^kn+b(k∈H,b∈Z) , it is usual to find the interval and radius of convergence by the d'Alembert determination method, not to do those by the formula of ρ=lim↓n→∞|(an+1)/an| , when the series lacks terms. In fact, to find the interval and radius of convergence of those series by the formula of ρ=lim↓n→∞|(an+1)/an| , it is just sufficient to make a transformation. The proof of the method is shown in this paper. Besides, the method has been generalized to find the convergent intervals of functional term series like ↑∞∑↓n=0 anx^kn+b(k∈H,b∈Z) by the formula of ρ=lim↓n→∞|(an+1)/an| with a transformation.
出处
《大学数学》
北大核心
2008年第6期169-172,共4页
College Mathematics
关键词
函数项级数
幂级数
收敛半径
收敛区间
比值判别法
functional term series
power series
radius of convergence
convergent interval
d' Alembert determination method