期刊文献+

基于行道树的道路快速提取和面积计算研究

Study on Rapid Road Extraction and Area Algorithms Based on Street Trees
下载PDF
导出
摘要 在城市遥感中,道路自动(半自动)提取一直是研究的重点。本文在现有道路自动(半自动)提取技术的基础上,结合高分辨率遥感影像中行道树的分布特点,从地学知识出发,利用归一化差值植被指数、阀值分割、数学形态学算子及地理信息系统的分析功能等实现基于行道树的道路自动(半自动)提取和道路面积快速、自动计算。结论表明基于行道树的道路提取和面积计算方法具有一定的实用性。 The road automatic (semi-automatic) extraction is a focal studied point of the city remote sensing. Based on the current road automatic (semi-automatic) extraction technique and combining the distinct street trees in the high-resolution remotely sensed image, this paper utilizes some methods in geonomy to implement the road automatic (semi-automatic) extraction and the rapid, automatic algorithms of the road size based on the street trees, including NDVI, thresholding segmentation, the relevant operators of mathematical morphology and the analytical function of GIS. The above analysis indicates that the rapid road extraction and area algorithm based on street trees is applicable.
出处 《地理信息世界》 2008年第6期78-81,共4页 Geomatics World
基金 重庆市自然科学基金资助项目(2005BB7103)
关键词 高分辨率遥感影像 道路提取 地理信息系统 面积计算 high-resolution remotely sensed image road extraction GIS area algorithms
  • 相关文献

参考文献9

二级参考文献45

  • 1颜锋华,金亚秋.尺度分布的Getis统计对遥感图像特征参量空间自相关性的研究[J].中国图象图形学报,2006,11(2):191-196. 被引量:6
  • 2王润生.图像理解[M].长沙:国防科技大学出版社,1994..
  • 3Wang Runsheng,Proc Int Conference on Multisource Multisensor Information Fusion,1998年,509页
  • 4王润生,图像理解,1994年,31页
  • 5Wilkinson G G.Recent Development in Remote Sensing Technology and the Importance of Computer Vision Analysis Techniques[C].In:Machine Vision and Advanced Image Processing in Remote Sensing,Springer,1999
  • 6Rouse J W,Haas R H,Schell J A et al.Monitoring vegetation systems in the great plains with ERTS.Third ERTS Symposium,NASA SP-351,1973;1:309-317
  • 7Sibiryakov A.House detection from aerial color images[R].Internal Report,Institute of Geodesy and Photogrammetry,ETH Zurich,1996
  • 8冈萨雷斯 著 阮秋琦 译.数字图像处理[M](第2版)[M].电子工业出版社,2003..
  • 9冈萨雷斯等,数字图像处理(MATLAB版)[M].北京,电子工业出版社,2004
  • 10Lei Xu, Adam Krzyzak, and Erkki Oja, Rival Penalized Competitive Learning for Clustering Analysis, RBF Net,and Curve Detection, IEEE transitions on neural networks, 1993

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部