期刊文献+

斑块环境下捕食-食饵系统的全局渐近稳定性 被引量:2

Global Asymptotic Stability of Predator-prey System in Patchy Environment
下载PDF
导出
摘要 考虑了两斑块环境下带有食饵阶段结构和比例依赖的常系数捕食-食饵系统的动力学行为.首先假设食饵被分为幼年和成年阶段并被限制在每一斑块中而不能进行斑块间的扩散;然后假设幼年食饵没有生育繁殖的能力且没有被猎物捕获的危险.对于捕食者,假设它们可以在斑块间扩散.基于这些假设,通过构造Lyapunov函数得到了该系统正平衡点的全局渐近稳定性的充分条件. The dynamic behavior of predator-prey system with constant coefficients and with stage structure of prey and ratio dependence in two-patch environments is considered. First, it is assumed that the prey species is divided into immature and mature stage and that the preys are confined to each of the patches but can not disperse between patches;then it is always supposed that the immature preys do not have the ability to reproduce and can not be captured by predators. For predators, it is supposed that they can disperse between two patches. Under these hypotheses, by constructing Lyapunov functions, the sufficient conditions are obtained for the global asymptotic stability of a positive equilibrium of this system.
出处 《兰州交通大学学报》 CAS 2008年第6期147-150,共4页 Journal of Lanzhou Jiaotong University
关键词 斑块环境 比例依赖 全局渐近稳定性 LYAPUNOV函数 patchy environment ratio dependence global asymptotic stability Lyapunov function
  • 相关文献

参考文献8

  • 1张存华,颜向平,张飞羽.具功能性反应的食饵—捕食者系统的定性研究[J].兰州铁道学院学报,2003,22(3):14-16. 被引量:4
  • 2刚毅,雒志学.一类具功能反应和密度制约的捕食系统的定性分析[J].兰州交通大学学报,2006,25(3):151-153. 被引量:4
  • 3WANG W, CHEN L. A predator-prey system with stage structure for predator[J]. Comput. Math. Appl. ,1997,33:83-91.
  • 4ZHANG X, CHEN L. The stage-structured predatorprey model and optimal harvesting policy[J]. Math. Biosci. , 2000,168 : 206210.
  • 5BERETTA E, KUANG Y. Global analysis in some delayed ratio-dependent predator-prey systems[J]. Nonlinear Anal. , TMA, 1998,32 : 381-408.
  • 6XU R, MAZE. Stability and hopf bifurcation in a ratio -dependent predator-prey system with stage structure [J]. Chaos, Solitons & Fractals, 2008,38: 669-684.
  • 7XU R,CHAPLAIN M,DAVIDSON FA. Global stability of a stage-structured Predator-prey model with prey dispersal[J]. Appl. Math. Comput. , 2005, 171: 293- 314.
  • 8KUANG Y. Delay differential equations with applications in population dynamics[M]. New York:academic press, 1993.

二级参考文献12

  • 1向红,严克明,王柏岩.具有反馈控制的捕食-食饵模型的周期解[J].兰州交通大学学报,2005,24(4):154-156. 被引量:3
  • 2陈均平 张洪德.具功能性反应的食饵-捕食者两种群模型的定性分析[J].应用数学和力学,1986,7(1):73-80.
  • 3叶彦谦.极限环论[M].上海:上海技术出版社,1986.24-80.
  • 4刘南根.具Holling Ⅰ型功能反应的食饵-捕食系统的极限环[J].数学年刊:A辑,1988,9(4):221-227.
  • 5陈兰荪 井竹君.捕食者-食饵相互作用中微分方程的极限环存在性和惟一性[J].科学通报,1984,29(9):521-523.
  • 6陈兰荪 井竹君.捕食者-食饵相互作用中微分方程的极限环存在性和唯一性.科学通报,1984,:29-523,521.
  • 7叶彦谦.极限环论[M].上海:上海科学技术出版社,1986..
  • 8马知恩.种群生态学的数学建模与研究[M].第2版.合肥:安徽教育出版社,2000.
  • 9符天武.具有密度制约的一类微分生态系统的定性分析[J].西安交通大学学报,1991,25(6):99-103. 被引量:1
  • 10程荣福,蔡淑云.一类具功能反应的食饵-捕食者两种群模型的定性分析[J].生物数学学报,2002,17(4):406-410. 被引量:89

共引文献6

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部