期刊文献+

线性算子L的性质及其应用 被引量:1

Properties and Applications of Linear Operator L
下载PDF
导出
摘要 利用泛函分析中的算子理论讨论了Hilbert空间中框架扰动的稳定性结果,并且改进了已有的相关结果:线性算子的条件是可逆的减弱为是满的,证明了对于Riesz基也有类似的扰动性结果。进一步研究了该线性算子的性质,并且把它应用到研究框架的交错对偶中。 The stability of frames under perturbation in Hilbert spaces was discussed by using the operator theory in functional analysis, and some new results were obtained. It is proved that the invertible requirement for a linear operator can be weakened to be a subjective one, and similar results also be obtained for Riesz basis under perturbation. The properties of the linear operator are further studied, which are applied into the alternate dual frames.
出处 《辽东学院学报(自然科学版)》 CAS 2008年第4期233-237,共5页 Journal of Eastern Liaoning University:Natural Science Edition
基金 福建省教育厅项目(JB04038) 辽东学院科研基金资助项目(2007-Y03)
关键词 线性算子L 框架 扰动 BESSEL序列 交错对偶框架 linear operator frame perturbation Bessel sequence alternate dual frame
  • 相关文献

参考文献2

二级参考文献5

  • 1余越,柯有安.非均匀子波空间采样定理[J].电子学报,1997,25(7):1-6. 被引量:4
  • 2Chui C K,Approx Theory and Its Appl,1999年,15卷,3期,1页
  • 3Chui C K,Approx Theory and Its Appl,1999年,15卷,1期,103页
  • 4Long R L,Wavelet Analysis in the High Dimensional Spaces,1995年
  • 5Chui C K,An Introduction to Wavelets,1992年

共引文献58

同被引文献13

  • 1YOUNG R M. An introduction to nonharmonic Fourier se- ries [M]. New York : Academic Press, 1980.
  • 2CASAZZA P G. The art of frame theory [ J ]. Taiwan Residents J. of Math. , 2000, 4 (2) : 129 -201.
  • 3CHRISTENSEN O. An introduction to frames and Riesz bases [ M ]. Boston: Birkhauser, 2003.
  • 4CHRISTENSEN OFrames, Riesz bases, and discrete Ga- bor/wavelet expansions [J]. Bulletin Amer. Math. Sot., 2001, 38 (3): 273-291.
  • 5MAuATS.信号处理的小波导引:第二版[M].杨力华,戴道清,黄文良,等,译.北京:机械工业出版社.2002.
  • 6RON A, SHEN Z. Weyl - Heisenberg frames and Riesz bases in L2(Rd) [J]. Duke Math. J. , 1997, 89:237 - 282.
  • 7WEXLER J, RAZ S. Discrete Gabor expansions [ J ]. Signal Proc. , 1990, 21 : 207 - 221.
  • 8CASAZZA P G, KUTYNIOK G, LAMMERS M C. Duali- ty principles in frame theory [ J ]. J. Fourier Anal. Ap- pl., 2004, 10 (4): 383-408.
  • 9CHRISTENSEN O, KIM H O, KIM R Y. On the duality principle by Casazza, Kutyniok, and Lammers [ J ]. J. Fourier Anal. Appl. , 2011, 17:640-655.
  • 10CASAZZA P G, CHRISTENSEN O. Frames containing a Riesz basis and preservation of this property under pertur- bations [J]. SIAM J. Math. Anal., 1998, 29 (1): 266 - 278.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部