期刊文献+

复杂环境下运动目标跟踪

Tracking Moving Objects in Complicated Environment
下载PDF
导出
摘要 主要针对复杂背景环境下的非刚体运动目标,采用基于核密度加权的颜色模型粒子滤波器算法对目标进行跟踪。利用巴特查里亚距离作为判据检测跟踪错误,并以此指导跟踪过程的恢复。仿真实验表明,该方法能够对复杂环境下的运动目标进行有效跟踪,并且有较强的抗干扰能力和自动恢复能力。 This paper mainly works on tracking of non - rigid moving objects in complicated background environment using particle filter algorithm which is based on the color model weighted by kernel density. Use Bhattacharyya distance as the criterion to detect the target tracking error and to guide the recovery of the tracking process. The simulation experiment indicates that this algorithm can effectively track moving objects and have stronger anti - interference ability and the capability of automatic recovery.
出处 《中国传媒大学学报(自然科学版)》 2008年第4期24-28,共5页 Journal of Communication University of China:Science and Technology
基金 国家自然科学基金项目(60572041)资助
关键词 目标跟踪 遮挡 粒子滤波器 颜色模型 巴特查里亚系数 tracking moving objects occlusion particle filter color histogram bhattacharyya coefficient
  • 相关文献

参考文献7

  • 1[1]Sanjeev M,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE trans on signal processing,2002,50(2):174-188.
  • 2[2]Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 3Katja Nummiaro,Esther Koller-Meier,Luc Van Gool.利用颜色的非刚性物体跟踪方法(英文)[J].自动化学报,2003,29(3):345-355. 被引量:15
  • 4[4]Zhou S K,Chellappa R,Moghaddam B.Appearance Tracking Using Adaptive Models in a Particle Filter[C].Asian Conference on Computer Vision,2004 (ACCV2004).
  • 5[5]Scott D W.Multivariate Density Estimation:Theory,Practice and Visualization[M].New York:John Wiley & Sons,Inc,1992.
  • 6[6]Hue C,Le Cadre JP,Perez P.Tracking multiple objects with particle filtering[J].IEEE Transactions on Aerospace and Electronic Systems,2002,38 (3):791-812.
  • 7[7]Djouadi A,Snorrason O,Garber F.The quality of training-sample estimates of the Bhattacharyya coefficient[J].IEEE Tran Pattern Analysis and Machine Intelligence,1990,12:92-97.

二级参考文献23

  • 1Beymer D, McLauchlan P. Coifman B, Malik J. A real-time computer vision system for measuring traffic parameters.Computer Vision and Pattern Recognition, 1997. 495-501.
  • 2Greiffenhagen M, Ramesh V, Comaniciu D, Niemann H. Statistical modeling and performance characterization of a real-time dual camera surveillance system. Computer Vision and Pattern Recognition ,2000. 335-342.
  • 3Segen J , Pingali S. A camera-based system for tracking people in real time. In:International Conference on Pattern Recognition, 1996. 63-67.
  • 4Gordon N, Salmond D. Bayesian state estimation for tracking and guidance using the bootstrap filter. Journal of Guidance. Control and Dynamics, 1995,18(6): 1434-1443.
  • 5Isard M, Blake A. Contour tracking by stochastic propagation of conditional density. European Conference on Computer Vision, 1996. 343-356.
  • 6Isard M, Blake A. CONDENSATION--Conditional density propagation for visual tracking. International Journal Computer Vision ,1998,1(29) :5-28.
  • 7Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 1996,5 ( 1 ) : 1 - 25.
  • 8Koller D, Weber J, Malik J. Robust multiple car tracking with occlusion reasoning. In:European Conference on Computer Vision, 1994. 189- 196.
  • 9Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. Computer Vision and Pattern Recoenition, 2000. 142-149.
  • 10Jepson A, Fleet D, El-Maraghi T. Robust online appearance models for visual tracking. Computer Vision and Pattern Recognition ,2001. 415-422.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部