期刊文献+

基于遗传算法的蜜罐系统 被引量:3

Trap System Based on Generic Algorithm
下载PDF
导出
摘要 入侵诱骗系统作为一种网络安全工具,其价值在于被扫描、攻击和入侵时,通过创建一个高度可控的攻击环境,从而捕获尽可能多的入侵信息。基于这些信息,分析入侵行为,预防更多的恶意破坏,从而更有效的保护网络。介绍一种基于遗传算法的蜜罐系统,其关键技术包括隐蔽的数据捕捉和基于遗传算法的行为分析技术。实验证明,该系统能有效捕捉恶意行为,防御多种新型攻击。 Intrusion deception system is one kind network safety method. When a system is intruded,it can set a controllable attack circumstance, so it can capture intrusion information as much as possible. Based on these information, we can analyze intrusion action, and prevent farther hostility destroy, there fore we can protect network more effectively. This paper introduces a kind of trap system based on generic algorithm, whose key technologies include hidden data catch technology and behavior analysis technology based on generic algorithm. Experiments prove the system can capture hostility behavior, and defense some new attacks.
出处 《南京邮电大学学报(自然科学版)》 EI 2008年第6期50-55,共6页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(60572131) 科技部科技型中小企业创新基金(08C26213200495) 江苏省科技攻关(BE2007058) 江苏省高校自然科学基础研究计划(08KJB520005) 华为基金 南京邮电大学科研基金(NY206050)资助项目
关键词 蜜罐 遗传算法 数据捕获 行为分析 Honeypot Generic algorithm Data capture Behavior analysis
  • 相关文献

参考文献5

二级参考文献17

  • 1刘勇 康立山 等.非数值并行算法-遗传算法[M].北京:科学出版社,1998.1-177.
  • 2E Eskin.Anomaly detection over noisy data using learned probability distributions[A].Proceedings of the 17th International Conference on Machine Learning[C].San Mateo,CA:Morgan Kaufmann,2000.255-262.
  • 3T Lane,C Brodley.Temporal sequence learning and data reduction for anomaly detection[J].ACM Trans Info System Security,1999,2:295-331.
  • 4T Lane,C E Brodley.Data reduction techniques for instancebased learning from human/computer interface data[A].Proceedings of the 17th International Conference on Machine Learning[C].San Mateo,CA:Morgan Kaufmann,2000.519-526.
  • 5D Dasgupta,F Gonzalez.An immunity-based technique to characterize intrusions in computer networks[J].IEEE Transactions on Evolutionary Computation,2002,3(6):281-291.
  • 6E Zitzler,L Thiele.Multi-objective evolutionary algorithms:comparative case study and the strength pareto approach[J].IEEE Trans of Evolutionary Computation,1999,3(4):257-271.
  • 7M Srinivas,M Patnaik.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Trans on Systems,Man,and Cybernetics,1993,24(4):656-667.
  • 8玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 9Dr. Thomas Back. Evolutionary Algorithms in Theory and Practice [M]. NewYork Oxford: Oxford University Press,1996.
  • 10J Levenick. Book Review: Showing the Way: a Review of the Second Edition of Holland's Adaptation in Natural and Artificial Systems. Artificial Intelligence [J]. 1998, 100:331~338.

共引文献80

同被引文献28

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部