期刊文献+

基于算法适用知识的挖掘算法选择交互系统

A System of Mining Algorithm Selection Based on Algorithm Suiting Knowledge
下载PDF
导出
摘要 为具体挖掘任务选择合适的挖掘算法需要用户对挖掘任务、各种挖掘算法和数据特征都非常熟悉,一般用户是很难达到这个要求的。针对以往研究的系统存在实现困难、不能适应动态添加算法等不足,文中形式化表示数据挖掘算法的适用知识,并基于此设计算法选择交互问题和选择逻辑,实现了一个易于实现的数据挖掘算法选择交互系统。实例验证了系统的有效性。 Appropriate algorithm could be selected by data mining user only when he is very familiar with mining task, all kinds of algorithms and data features. It' s difficult for ordinary user to do it. Aiming at shortcomings of past works, algorithm suiting knowledge is represented formally. Based on the algorithm, interactive questions and selection logic are designed. An easy-to-implemented system of data mining algorithm selection is realized. An example shows the efficiency of the algorithm.
出处 《南京邮电大学学报(自然科学版)》 2008年第6期65-68,共4页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 江苏省高校自然科学基础研究计划(KJD520151)资助项目
关键词 算法选择 数据挖掘 算法适用知识 交互系统 Algorithm selection Data mining Algorithm suiting knowledge Interactive system
  • 相关文献

参考文献7

  • 1邹力鹍,王丽珍,姚绍文.数据挖掘方法本体研究[J].计算机科学,2005,32(3):197-199. 被引量:14
  • 2ENGELS R, LINDNER G, STUDER R. A Guided Tour through the Data Mining Jungle[ A] //Proceedings of the 3rd International Conference on Knowledge Discovery in Databases[ C]. 1997.
  • 3REDPATH R, SRINIVASAN B. A Model for Domain Centered Knowledge Discovery in Databases [ A ] // Proceedings of the IEEE 4th Intemational Conference On Intelligent Systems Design and Application [ C ]. Budapest, Hungary ,2004.
  • 4CRAW S, SLEEMAN D, GRANER N, et al. CONSULTANT : Providing Advice for the Machine Learning Toolbox [ A ]//Proceedings of the BCS Expert Systems 92 Conference, Cambridge University [ C ]. 1992:5 - 23.
  • 5SLEEMAN D, RISSAKIS M, CRAW S, et al. Consuhant-2 : pre-and post-processing of Machine Learning applications [ J ]. Human-Computer Studies, 1995,45:43 - 63.
  • 6MITCHELL T. Machine Learning [ M ]. New York:McGraw-Hill, 1997.
  • 7JIAWEI H,MICHELINE K.数据挖掘--概念与技术(影印版)[M].北京:高等教育出版社,2002:4.

二级参考文献7

  • 1陆汝汵.世纪之交的知识工程与知识科学[M].清华大学出版社,2001..
  • 2Uschold M, Gruninger M. ONTOLOGIES: Principles, methods and applications. Knowledge Engineering Review, 1996,11 (2): 93-155
  • 3Guarino N. Formal ontology and information system. In: Guarino N ed. Formal Ontology in Information System. Trento :IOS Press,1998. 6-8
  • 4Han Jiawei, Kambr M. Data Mining Concepts and Techniques. 高等教育出版社,2001
  • 5Bernstein A, Provost F, Hill S. An Intelligent Assistant for the Knowledge Discovery Process: An Ontology-based Approach.2002. Working Paper of the Center for Digital Economy Research,New York University-Leonard Stern School of Business ,CeDER Working Paper # IS-01-01
  • 6Keim D A. Information Visualization and Visual Data Mining.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,JANUARY-MARCH, 2002,7 (1): 100-107
  • 7周肖彬,曹存根.基于本体的医学知识获取[J].计算机科学,2003,30(10):35-39. 被引量:35

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部