期刊文献+

一般空间中逐次渐近Φ-强伪压缩型算子的具误差的多种迭代间的收敛性和稳定性的等价问题

The Equivalence Problem of the Convergence and Stability between a Variety of Iterations with Errors for Successively Asmptotically Φ-Strongly Pseudocontractive Type Operators in General Spaces
下载PDF
导出
摘要 关于多种迭代间收敛性的等价问题已有不少非线性分析学者进行了研究,并对2003年B.E.Rhoades和S.M.Solutz两位教授提出的猜想做出了部分肯定的回答.我们将对一般Banach空间中更具一般意义的算子——逐次渐近Φ-强伪压缩型算子证明了具误差的修正Mann迭代和具误差的修正p步Noor迭代分别强收敛于该算子的不动点是等价的,并给出了相应的T-稳定性间也是等价的,从而从更一般的意义上来肯定地回答Rhoades和Soltuz于2003年所提出的猜想. The equivalence problem of a variety of iterations of the convergence is a main topic in nonlinear analysis, some nonlinear experts give a partly affirmative answer to the conjecture raised by B.E. Rhoades and S.M. Soltuz in 2003. The purpose of this paper is to prove the equivalence of the convergence between the modified Mann and p - step iterations with errors for successively asmptotically strongly - pseudocontractive type operators in general space, and the respective equivalence of T - stability is also given. So, the more generalized affirmative answer is given to the conjecture in a more general sense.
出处 《绍兴文理学院学报》 2008年第10期15-23,共9页 Journal of Shaoxing University
基金 浙江省新苗人才计划资助项目(2007R40G218005) 绍兴文理学院校级教改立项资助项目(070204) 浙江省自然科学基金资助项目(Y606717) 浙江省教育厅科研计划重点资助项目(20061154)
关键词 逐次渐近Φ-强伪压缩型算子 具误差的修正Mann迭代 具误差的修正p步Noor迭代 T一稳定性 收敛的等价性 successively asmptotieally strongly - pseudocontraetive type operator modified Mann iteration with error modified p - step Noor iteration with error T - stability equivalence of the convergence
  • 相关文献

参考文献11

  • 1黎永锦.Mann迭代和Ishikawa迭代收敛的等价[J].中山大学学报(自然科学版),2004,43(1):5-7. 被引量:3
  • 2Liu L S.Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach space[].Journal of Mathematical.1995
  • 3Xu Y G.Ishikawa and Mann iterative process with errors for nonlinear strongly accretive operator equations[].Journal of Mathematical Analysis and Applications.1998
  • 4RHOADES B E,SOLTUZ S M.On the equivalence of Mannand Ishikawa iteration methods[].International Journal of Mathematics and Mathematical Sciences.2003
  • 5B. E. Rhoades and Stefan M. Soltuz.The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps[].Journal of Mathematical Analysis and Applications.2004
  • 6B.E.Rhoades,S.M.Soltuz.The equivalence of ManniterationandIshikawaiterationforΨ-uniformly pseudocon-tractive orΨ-uniformly accretive maps〔J〕[].IntJMathSci.2004
  • 7B. E. Rhoades,S. M. Soltuz.The equivalence between the convergences of Ishikawaand Mann iterations for an asymptotically pseudocontractive map[].Journal of Mathematical Analysis and Applications.2003
  • 8B.E.Rhoades,S.M.Soltuz.The equivalence of Manniteration and Ishikawa iterationfornon-Lipschitzion opera-tors〔J〕[].IntJMathSci.2003
  • 9Zhenyu Huang.Equivalence theorems of the convergence between Ishikawa and Mann iterations with errors for generalized strongly successively Φ-pseu-docontractive mappings without Lipschitzian assumptions[].Journal of Mathematical Analysis and Applications.2007
  • 10Zhenyu Huang,Fanwei Bu,Muhammad Aslam Noor.On the equivalence of the convergence criteria between modified Mann-Ishikawa and multistep iterations with errors for successively strongly pseudo-contractive operators[].ApplMtahComput.2006

二级参考文献10

  • 1[1]CHIDUME C E,OSILIKE M O.Nonlinear accretive and pseudo-contractive equations in Banach spaces [J].Nonlinear Analysis, 1998, 31: 779-789.
  • 2[2]MANN W R.Mean value methods in iteration[J]. Proc Amer Math Soc, 1953, 4: 506-510.
  • 3[3]ISHIKAWA S.Fixed points by a new iteration method[J].Proc Amer Math Soc, 1974, 44: 147-150.
  • 4[4]KATO T.Nonlinear semi-groups and evolutions equations [J]. J Math Soc Japan, 1964, 19: 508-520.
  • 5[5]MARTIN R H,Jr.A global existence theorem for autonomous differential equations in Banach space[J]. Proc Amer Math Soc, 1970, 26:307-314.
  • 6[6]CHIDUME C E,MUTANGADURA S A. An example of the Mann iteration Lipschitz pseudocontraetions[J]. Proc Amer Math Soc, 2001, 129: 2359-2363.
  • 7[7]CHIDUME C E.Global iterative schemes for strongly pseducontractive maps[J]. Proc Amer Math Soc, 1998, 126:2641-2649.
  • 8[8]CHIDUME C E,ZEGEYE H. Iterative solution of 0 ∈ Ax for an m-accretive operator certain Banach spaces[J]. J Math Anal Appl, 2002, 269:421-430.
  • 9[9]RHOADES B E,SOLTUZ S M. On the equivalence of Mann and Ishikawa iteration methods[J]. Int J Math Math Sci,2003, 7: 451-459.
  • 10[10]CHIDUME C E,OSILIKE M O. Iterative solutions of nonlinear accretive operator in arbitrary Banach spaces[J].Nonlinear Analysis, 1999, 36:863-872.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部