期刊文献+

一种基于扩展Infomax的自适应学习算法

AN SELF-ADAPTIVE LEARNING ALGORITHM BASED ON EXTENDED INFOMAX
下载PDF
导出
摘要 独立向量分析根据信源统计独立特性对观测信号进行分离运算,扩展Informax算法既能分离超高斯信号,也能分离亚高斯信号,得到广泛的应用。本文基于扩展Info-max算法特点,提出了一种自适应的学习算法,该算法使得学习步长根据信号的代价函数变化而变化,克服了扩展Infomax算法在稳态步长调整过程中的不足,仿真结果证实了该算法的有效性。 Independent component analysis did signal separation operation based on independences of the observed signal. Extended Informax could separate Super - Gaussion signal and Sub - Ganssion signal, and got widely used. An improved self-adaptive learning algorithm was introduced in the paper. The algorithm made learning step change according to the cost function of signal changes, and overcame the disadvantages of extended informax algorithm in the process of step size change of adaptive steady state. The simulations had verified its validity.
作者 侯艳艳
出处 《九江学院学报》 2008年第6期20-23,共4页 JOurnal of Jiujiang University :Social Science Edition
关键词 独立向量分析 扩展Infomax 超高斯 亚高斯 independent component analysis extended information - maximization super - Gaussion sub - Gaussion
  • 相关文献

参考文献1

二级参考文献8

  • 1Hyvarinen A. Survey on independent component analysis[J]. Neural Computing Surveys. 1999,2:94-128.
  • 2Jung TP, et al. Analysis and visualization of single trial event-related potentials[J]. Human Brain Mapping,2001,14:166-185.
  • 3Makeig S, Anthony J, Bell TP, et al. Independent component analysis of electroencephalographic data[J]. In: Advances in Neural Information Processing Systems 8,1996,145-151.
  • 4Amari S. Natural gradient works efficiently in learning[J]. Neural Computation,1998,10(2):251-276.
  • 5Lee TW, Girolami M, Sejnowski T. Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources[J]. Neural Computation, MIT Press, 1999,11(2):609-633.
  • 6Bert-Uwe Koehler, Lee TW, Orglmeister R. Improving the performance of infomax using statistical signal processing techniques[C]. Proc. 7th International Conference on Artificial Neural Networks, Lausanne, Switzerland,1997,535-540.
  • 7http://www.sccn.ucsd.edu/-scott
  • 8洪波,唐庆玉,杨福生,潘映辐,陈葵,铁艳梅.ICA在视觉诱发电位的少次提取与波形分析中的应用[J].中国生物医学工程学报,2000,19(3):334-341. 被引量:52

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部