期刊文献+

具有轮盘反转算子的多Agent算法用于线性系统逼近 被引量:4

Effective multi-Agent algorithm with roulette inversion operator for approximating linear systems
下载PDF
导出
摘要 针对John Holland的反转算子在数值优化中的不合理性,提出了一种轮盘反转算子来克服这种不合理性,并结合该算子提出了一种多Agent进化算法(RAER),证明了算法的全局收敛性.无约束优化仿真实验表明,该算法性能好于其他算法.在求解线性系统逼近工程优化问题时,无论在固定区域还是动态扩展区域搜索,算法都能得到更好的模型,较其他算法能够对搜索区域进行更为充分的探索和求精.RAER算法是实际有效的. The irrationality of the inversion operator designed by John Holland is analyzed and revealed; and a new roulette inversion operator is proposed to cope with this problem. A new multi-agent evolutionary algorithm(RAER) is then developed by integrating the roulette inversion operator. Theoretical analysis shows that RAER converges to the global optimum. Four benchmark functions are used to test the performance of RAER, the results show that RAER achieves a better performance than other algorithms. RAER can be successfully used to solve linear system approximation problems in fixed search areas and dynamically expanded search areas. Especially, in the stable linear system approximation in several enlarged search areas, RAER can find the typical and optimal solutions in one specified area. This demonstrates the efficacy of RAER in practical applications.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第1期39-45,共7页 Control Theory & Applications
基金 国家自然科学基金资助项目(70631003 70771037)
关键词 多智能体 无约束最优化 线性系统逼近 反转算子 multi-Agent unconstrained optimization approximation of linear system inversion operator
  • 相关文献

参考文献6

二级参考文献27

  • 1王艳红,尹朝万.一类基于多Agent和分布式规则的敏捷生产调度[J].控制理论与应用,2004,21(4):526-530. 被引量:8
  • 2钟伟才,刘静,焦李成.多智能体遗传算法用于线性系统逼近[J].自动化学报,2004,30(6):933-938. 被引量:25
  • 3方义,熊璋,王剑昆.BACnet的对象及服务扩展[J].计算机工程,2005,31(18):205-207. 被引量:6
  • 4戴汝为.复杂性研究[M].中国科学院复杂系统与智能科学实验室,1999..
  • 5Leung Y.W., Wang Y.. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 41~53
  • 6Kazarlis S.A.,Papadakis S.E.,Theocharis J.B.,Petridis V..Microgenetic algorithms as generalized hill-climbing operators for GA optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(3): 204~217
  • 7Runarsson T.P., Yao X.. Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284~294
  • 8Wilcox J.R.. Organizational learning within a learning classifier system[Master dissertation]. University of Illinois, Illinois, USA, 1995
  • 9Coase R.H.. The Firm, the Market, and the Law. Chicago: University of Chicago Press, 1988
  • 10Rudolph G.. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, Special Issue on Evolutional Computing, 1994, 5(1): 96~101

共引文献102

同被引文献36

  • 1钟伟才,刘静,刘芳焦,李成.组合优化多智能体进化算法[J].计算机学报,2004,27(10):1341-1353. 被引量:34
  • 2钟伟才,刘静,焦李成.多智能体遗传算法用于线性系统逼近[J].自动化学报,2004,30(6):933-938. 被引量:25
  • 3GONG Maoguo,DU Haifeng,JIAO Licheng.Optimal approximation of linear systems by artificial immune response[J].Science in China(Series F),2006,49(1):63-79. 被引量:21
  • 4李宏,焦永昌,张莉,王宇平.一种求解全局优化问题的新混合遗传算法[J].控制理论与应用,2007,24(3):343-348. 被引量:19
  • 5HE Y H, CHI W FI. Genetic algorithm for large-size multi-stage batch plant scheduling[J]. Chemical Engineering Science, 2007, 62(5): 1504- 1523.
  • 6ZHONG W C, LIU J, XUE M Z, et al. A multi-agent genetic algorithm for global numerical optimization[J]. 1EEE Transactions on Systems, Man, and Cybernetics-part B: Cybernetics(S1083-4419), 2004, 34(2): 1128 - 1141.
  • 7ZENG X P, LI Y M, JIAN Q. A dynamic chain-like agent genetic algorithm for global numerical optimization and feature selection[J]. Neurocomputing, 2009, 72(4/6): 1214- 1228.
  • 8CHI W H, AVANEESH G. A novel MILP formulation for short-term scheduling of multistage multi-product batch plants[J]. Computers & Chemical Engineering, 2000, 24(2): 1611 - 1617.
  • 9王万良,吴启迪.生产调度智能算法及应用[M].北京:科学出版社,2007.
  • 10PABLO A MARCHETTI, JAIME CERDA. A general resourceconstrained scheduling framework for multistage batch facilities with sequence-dependent changeovers[J]. Computers and Chemical Engineering, 2009, 33(4): 871 - 886.

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部