期刊文献+

SL(3,11)的Cartan不变量矩阵 被引量:1

The Cartan Invariant Matrix of SL(3,11)
下载PDF
导出
摘要 确定出A2型有限群G(1)=SL(3,11)的Cartan不变量矩阵C=(cλ(1μ))λ,μ∈X1(T),利用MATLAB软件计算C的行列式的值是1112,与Brauer理论所指出的结果一致. The Cartan invariant matrix C ==(c^(1)λμ)λ,μ∈X1(T) of the finite group G( 1 ) = SL( 3,11 ) of type A2 is determined, and detC = 11^12 is given by MATLAB soft.
作者 胡余旺 靖丽
出处 《信阳师范学院学报(自然科学版)》 CAS 2009年第1期1-4,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 河南省自科学基金项目(511010200) 河南省教育厅自然科学研究项目(2004922079) 河南省高校青年骨干教师资助项目(教高[2005]461号)
关键词 CARTAN不变量 WEYL模 不可约模 主不可分解模 Caftan invariant Weyl module irreducible module principal indeeomposable module
  • 相关文献

参考文献16

  • 1Brauer R, Nesbitt C. On the modular characters of groups [ J ]. Ann of Math ( S0003 -486X ), 1941,42 : 556 -590.
  • 2Alperin J L. On modules for linear fractional groups[C]//International Symposium on Theory of Finite Groups. Kyoto:RIMS,1975:157-163.
  • 3Alperin J L. Projective modules for SL(2,2^n) [J]. Pure Appl Algebra(S0022-4049) ,1979,15:219-234.
  • 4Upadhyaya B S. Compostion factors of the principal indecomposable modules for the special linear groups SL (2,q)[J]. J London Math Soc ( S0024-6107 ), 1978,17 (2) :437-445.
  • 5Zsslawsky E. Computational methods to ordinary and modular characters of some finite simple groups[D]. Santa cruz: Univ California, 1974.
  • 6Humphreys J E. Some computation of Carton invariants for finite groups of Lie type [ J ]. Comm Pure Appl Math (S0010-3640), 1973,26:745- 755.
  • 7叶家琛.SL(3,p^n)的Cartan不变量[J].数学研究与评论,1982,2:9-19.
  • 8Andikfar H. Decomposition numbers of spevial and unitary groups in the defining characteristic[D]. Chicago:Univ Hlinois,2005.
  • 9Benson D J, Martin S. Mod 2 cohomology of the unitary groups U3(2^n)[J]. Comm Algebra( S0092-7872 ), 1991,19:3125-3144.
  • 10Humphreys J E. Ordinary and modular representations of chevalley groups[C]//Lecture Notes in Math (528). Berlin: Springer, 1976.

共引文献1

同被引文献17

  • 1Alperin J L. On nmdules for the linear fi-actional groups [ C ]//Internstional Symposium on Them7 of Finite Croups. Kyoto:RIMS, 1975:157- 163.
  • 2Alperin J L. Projective modules for SL(2,2^n) [J]. J Pure Appl Algebra, 1979, 15 : 219-234.
  • 3Upadhyaya B S. Composition factors of the principal indecomposable modules for the special linear group Sl ( 2, q) [ J ]. J London Math Soc (Ser 2) ,1978, 17: 437-445.
  • 4Benson D J, Martin S. Mod 2 cohomology of the unitary groups U3 (2^n ) [ J ]. Comm Algebra. 1991, 19 : 3125-3144.
  • 5Humphreys J E. Ordinary and modular representations of Chevalley groups[ M ]. Lecture Notes in Math, 528. Berlin: Springer, 1976.
  • 6Humphreys J E. Some computations of Cartan invariants for finite groups of Lie type[ J]. Comm Pure Appl Math, 1973, 26: 745-755.
  • 7Ye J C. The Cartan invariants ofSL(3 ,p^n)[J]. J Mathematical Resemvh and Exposition, 1982, 2(4) : 9-19 (In Chinese).
  • 8Zaslawsky E. Computational method.s applied to ordiruzry arm modular characters of some finite simple gnaps[ D]. Santa Cruz: Univ. Califbrnia, 1974.
  • 9Benson D J. The Loewy structure of the projective indecomposable modules for A8 in characteristic 2[J]. Bomm Algebra, 1983, 11 : 1395-1432.
  • 10Du J, The Cartan invariants ofSl(4,2n) [J]. J East China Normal University(Nat Sci Ed) , 1986, 4:17-25 (In Chinese).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部