期刊文献+

具反馈控制的阶段结构种群模型的稳定性 被引量:4

The Stability of a Stage-structured Species Model with Feedback Controls
下载PDF
导出
摘要 研究一个具反馈控制的时滞和阶段结构种群模型.证明了模型正平衡点的局部渐近稳定性,并给出了正平衡点全局渐近稳定的充分性条件. A time delay and stage-structured model with feedback controls is investigated, the local asymptotic stability of the positive equilibrium of the model is proved, and the sufficeient conditions of the global asymptotic stability of the positive equilibrium of the model are obtained.
作者 赵明 程荣福
出处 《信阳师范学院学报(自然科学版)》 CAS 2009年第1期14-17,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 北华大学科研基金(2007014)
关键词 种群模型 阶段结构 反馈控制 时滞 稳定性 species model stage-structured feedback controls time delay stability
  • 相关文献

参考文献11

二级参考文献25

  • 1陈兰荪 梁肇军.生物动力学系统中的几个研究课题[A]..常微分方程与控制论论文集:武汉学术讨论会[C].,1987.87-98.
  • 2[1]Arnold E M. On Stability and Periodicity in Phosphorus Nutrient Dynamics. Quart. Appl. Math., 1980, 38:139-141
  • 3[2]Beretta E, Bischi G I, Solimano F. Stability in Chemostat Equations with Delayed Nutrient Recycling. J. Math. Biol., 1991, 85:99-111
  • 4[3]Bischi G I. Effects of Time Lags on Transient Characteristic of a Nutrient Cycling Model. Math. Biosci., 1992, 109:151-175
  • 5[4]Ruan Shigui. The Effect of Delays on Stability and Persistence in Plankton Models. Nonlinear Analysis, 1995, 24:575-585
  • 6[5]Hale J K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977
  • 7[6]Hale J K, Waltman P. Persistence in Infinite-dimensional Systems. SIAM J. Math. Appl., 1989, 20:388-395
  • 8[7]Cao Yulin, Freedman H I. Global Attractivity in Time-delay Predator-prey Systems. J. Austral. Math. Soc. (Series B), 1996, 38:149-162
  • 9陈兰荪,生物数学学报,1988年,3卷,1期,18页
  • 10Kuang Y,J Math Biol,1998年,36卷,389页

共引文献206

同被引文献22

  • 1高建国.具有时滞和基于比率的一类捕食者-食饵系统全局周期解的存在性[J].生物数学学报,2005,20(3):315-320. 被引量:25
  • 2徐瑞,郝飞龙,陈兰荪.一个具有时滞和阶段结构的捕食-被捕食模型[J].数学物理学报(A辑),2006,26(3):387-395. 被引量:30
  • 3丁孝全,程述汉.具反馈控制的时滞阶段结构种群模型的稳定性[J].生物数学学报,2006,21(2):225-232. 被引量:16
  • 4Aiello W G, Fredman H I. A Time-Delay Model of Single-Species Growth Stage Structure[ J]. Math Biosci ,2004,101:139-153.
  • 5Arditi R, Ginzburg L R. Coupling in Predator-prey Dynamics: Ratio-dependence [ J ]. J Theoretical Biol, 1989,139:311-326.
  • 6Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[ M ]. Berlin: Springer-Verlag, 1977:40-45.
  • 7Aiello W G,Fredman H I.A Time-Delay Model of Single-Species Growth Stage Structure[J].Math Biosci,1990,101:139-153.
  • 8Arditi R,Ginzburg L R.Coupling in Predator-prey Dynamics:Ratio-dependence[J].J Theoretical Biol,1989,139:311-326.
  • 9Gaines R E,Mawhin J L.Coincidence Degree and Nonlinear Differential Equations[M].Berlin:Springer-Verlag,1977:40-45.
  • 10Aiello W G, Fredman H I. A Time-Delay Model of Single-Species Growth Stage Structure [ J ]. Math Biosci, 1990,101:139 - 153.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部