期刊文献+

基于聚类的Web用户访问模式的算法研究

Research of the Cluster Algorithm based on Web Customer Access Model
下载PDF
导出
摘要 用户对Web站点的访问代表了用户对Web站点上页面的访问兴趣,这种兴趣程度可以通过用户对Web站点上页面的浏览顺序及页面上的浏览时间表现出来.通过对Web用户访问路径的分析,提出一种基于浏览路径及浏览时间的相似度的度量方法.然后,把粗糙度的概念引入Leader聚类算法中,提出粗糙Leader聚类算法.最后使用标准数据集进行了试验,证明基于此种相似度计算方法,应用粗糙Leader聚类算法Web用户的有效性. Tbe access of the users about a Web site represents the interest of users in the Web pages of the Web site. Each user' s interest can be manifested by the sequence of each user access and access time in the Web. By analyzing the access path of Web user, similarity based on the sequence of each user access and access times can be put forward. Then, the concept of rough approximations is introduced in Leader cluster algorithm and the rough cluster algorithm based on Leader is suggested. Finally, the performance of the rough Leader cluster algorithm is tested and analyzed by benchmark based on the novel method to computing the similarities of the web user' s access patterns.
作者 郭淑红 雷梁
出处 《信阳师范学院学报(自然科学版)》 CAS 2009年第1期137-141,共5页 Journal of Xinyang Normal University(Natural Science Edition)
基金 河南省教育厅科技计划项目(2006520011)
关键词 聚类 相似度 Leader算法 用户访问模式 clustering, similarity, Leader algorithm, customer access model
  • 相关文献

参考文献8

  • 1Foss A, Wang W, Zaiane O R. A non-parametric approach to web log analysis[ C ]//Proeeedings of Workshop on Web Mining in First International SIAM Conference on Data Mining , 2001.
  • 2Asharaf S. A rough fuzzy approach to web usage categorization [ J ]. Fuzzy Set and Systems ( S O165-0114 ), 2004,148 ( 1 ) : 119-129.
  • 3Han J W. Extensions to the k-means algorithm for clustering large data sets with categorical values[J]. Data Mining and knowledge Discover( S 1384-5810), 1998, 2 ( 1 ) :283-304.
  • 4王实,高文,李锦涛,谢辉.路径聚类:在Web站点中的知识发现[J].计算机研究与发展,2001,38(4):482-486. 被引量:59
  • 5Luotonen A. The common log file format[ EB/OI,]. [ 2008-05-15 ]. http ://www. w3. org/pub/WWW/.
  • 6张琼,张莹,白清源,谢丽聪,谢伙生.一种新的基于粗糙集的leader聚类算法[J].计算机科学,2008,35(3):177-179. 被引量:4
  • 7Lingras P. Interval set clustering of web users with Rough k-Means[J]. Journal of Intelligent Information System ( S 0925-9902 ), 2004,23 ( 1 ) : 5-16.
  • 8马力,焦李成,刘国营.一种基于路径聚类的Web用户访问模式发现算法[J].计算机科学,2004,31(8):140-141. 被引量:10

二级参考文献15

  • 1[1]Chen M S,Park J S,Yu P S. Data mining for path traversal patterns in a Web environment. In: Proc of the 16th intl. Conf. on Distributed Computing Systems. Hong Kong, 1996. 385~392
  • 2[2]Han J W. Extensions to the K-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discover,1998,2(1) :283~304
  • 3[3]Mobasher B,Cooley R ,et al. Creating adaptive Web sites through usage-based clustering of URLs. In : proc. of the 1999 IEEE Knowledge and Data Engineering Exchange Workshop (KDEX'99). New York :IEEE Press, 1999.32~37
  • 4[4]Shahabi C,Zarkesh A M,Adibi J. et al. Knowledge discovery from users Web-page navigation. In:Proc. of Workshop on Research Issures in Data Engineering. Birmingham, 1974.44~51
  • 5[5]Yan T,Jacobesn M,Garcia-Molina H, et al. Trom user access patterns to dynamic hypertext linking. In:Proc. of the 5th intl. WorldWide Web Conf. Paris,1996.27~36
  • 6[6]Nasraoui O,Frigui H,Joshi A, et al. Mining Webaccess logs usingrelational competitive fuzzy clustering. In: Proc. of the 8th Fuzzy Systems Association World congress. London: Springer-Verlag,1999
  • 7[7]Perkowitz M,Etzioni O. Adaptive Web sites:Automatically synthesizing Web pages. In : Proc. of AAAI98 Madison: AAAI Press,1998. 35~40
  • 8[8]Luotonen A. The commom log file format. 1995. http://www.w3. org/pub/www/
  • 9Yan T,Proc of the 5th Int World Wide Web Conf,1996年,27页
  • 10Lingras P. Rough set clustering for Web mining. IEEE, 2002. 1039-1044

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部