期刊文献+

Markov链的乘性Schwarz迭代

Multiplicative Schwarz Method for Solving Markov Chains
下载PDF
导出
摘要 近来,Marek等将Schwarz方法引入了奇异线性方程组的求解问题.然而,这种方法对于分裂阵和迭代阵的要求过于严格.本文在此基础上,利用Drazin逆给出了拟非负分裂的定义.对Markov链分裂阵的要求由非负型分裂推广到拟非负型分裂,研究了Markov链乘性Schwarz迭代的半收敛性,两水平乘性Schwarz迭代的半收敛性和它们的单调性,扩充了Schwarz迭代方法的理论,使这种方法更具实用性. Up to now,singular systems are analyzed using Schwarz methods by I. Marek,and it is the first time that Markov chains problems are studied in that context. But it is strict to splitting matrix and iterative matrix. In this paper, the author gives the definition of quasi-nonnegative splittings. Splitting matrixs vary from nonnegative splittings to quasi-nonnegative splittings. It is shown that the semiconvergence of the multiplicative schwarz iterative method, and hybrid II Schwarz iterative method, the monotone convergence of the multiplicative schwarz iterative method.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期18-21,共4页 Journal of Xiamen University:Natural Science
关键词 乘性Schwarz方法 MARKOV链 拟非负型分裂 multiplicative Schwarz method Markov chains quasi-nonnegative slittings
  • 相关文献

参考文献8

  • 1林建华,郭广报.半迭代方法的收敛性[J].厦门大学学报(自然科学版),2007,46(1):14-17. 被引量:5
  • 2郭广报.Markov链平稳分布的迭代解法[J].厦门大学学报(自然科学版),2008,47(3):308-311. 被引量:1
  • 3Marek I, Szyld D B. Algebraic Schwarz methods for the numerical solution of Markov chains[J]. Linear Algebra Appl, 2004,386 : 67-81.
  • 4Berman A. Plemmons R J, Nonnegative matrices in the mathematical sciences[M]. New York: Academic Press, 1979.
  • 5Song Yongzhong. Semiconvergence of nonnegative splittings for singular matriees[J]. Numer Math,2000,85: 109-127.
  • 6Chan T F, Mathew T P. Domain decomposition algorithms [J]. Acta Numer,1994,3:61-143.
  • 7Szyld D B. Equivalence of convergence conditions for iterative methods for singular equations[J]. Numer Linear Algebra Appl, 1994,1 : 151 - 154.
  • 8Bru R, Pedroche F, Szyld D B. Iterations for Markov chains,society for industrial and applied mathematics[J]. Society for Industrial and Applied Mathematics, 2005,27: 445-458.

二级参考文献11

  • 1Song Yongzhong, Semiconvergence of nonnegative splittings for singular matrices[J]. Numer Math,2000,85 : 109 -127.
  • 2Marek I, Szyld D B. Algebraic Schwarz methods for the numerical solution of Markov chains[J]. Linear Algebra Appl, 2004,386 : 67- 81.
  • 3Bru R, Pedroche F, Szyld D B. Iterations for Markov chains, society for industrial and applied mathematics[J]. Society for Industrial and Applied Mathematics, 2005,27 (2):445-458.
  • 4Philippe B, Saad Y, Stewart W J. Numerical methods in Markov chain modelling[J]. Operat Research, 1992,40:1156- 1179.
  • 5Frommer A, Szyld D B. Weighted max norms, splittings, and overlapping additive Schwarz iterations[J]. Numerische Mathematik, 1999,83 : 259 - 278.
  • 6Benzi M,Frommer A,Nabben R,et al. Algebraic theory of multiplicative Schwarz methods [J]. Numerische Mathematik,2001,89 : 605- 639.
  • 7Nabben R. Comparisons between additive and multiplicarive Schwarz iterations in domain decomposition methods [J]. Numer Math, 2003,95 : 145 - 162.
  • 8Berman A, Plemmons R J. Nonnegative matrices in the mathematical sciences[M]. New York: Academic Press, 1979.
  • 9Chan T F, Mathew T P. Domain decomposition algorithms [J]. Acta Numer, 1994,3 : 61- 143.
  • 10Szyld D B. Equivalence of convergence conditions for iterative methods for singular equations[J]. Numer Linear Algebra Appl, 1994,1 : 151- 154.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部