期刊文献+

四腿机器人步态参数自动进化研究与实现 被引量:10

Research and Implementation of Automatic Gait Evolution for 4-Legged Robot
下载PDF
导出
摘要 采用进化算法和基于自主视觉的适应度评估方法,实现了四腿机器人在RoboCup机器人足球比赛现场的行走步态在线自动进化.我们引入内推法作为交叉方法,利用PC基站进行进化算法计算和流程主控,并采用了一些学习时间缩减策略.实现了进化学习的连续性和可扩展性,使得学习过程可以在40-60 min内完成,这样就能在比赛现场对ERS-7四足机器人进行行走再学习,提高了行走控制的适应性.算泫最终结果使ERS-7型四足机器人的行走速度从27 cm/s提升到43 cm/s. By adopting evolution algorithm and autonomous-vision-based fitness evaluation approaches, the on-line automatic gait evolution of 4-legged robot in a RoboCup soccer field is realized. We incorporate interpolation method as the crossover method, use a PC base station to conduct algorithm calculation and flow control, and adopt some time-cutting strategies. The evolutionary learning is implemented with high continuity and expansibility, and the whole learning process can be completed within 40-60 minutes. In-field gait re-learning of the ERS-7 4-legged robot is realized, and the adaptability of walking control is improved. At last, the walking speed of ERS-7 4-legged robots is increased from 27 cm/s to 43 cm/s with the proposed algorithm.
作者 许涛 陈启军
出处 《机器人》 EI CSCD 北大核心 2009年第1期72-76,81,共6页 Robot
基金 国家自然科学基金资助项目(60875057).
关键词 四腿机器人 步态学习 进化算法 行走控制 4-legged robot gait learning evolution algorithm walking control
  • 相关文献

参考文献13

  • 1Hengst B, Ibbotson D, Pham S B, et al. The UNSW RoboCup 2000 Sony legged league team[A]. RoboCup 2000: Robot Soccer World Cup Ⅳ[C]. Berlin, Germany: Springer, 2001.64-75.
  • 2Mitchell T M. Machine Learning[M]. USA: McGraw-Hill, 1997.
  • 3Powell M J D. A method for nonlinear constraints in minimization problems[A]. Optimization[M]. London, UK: Academic Press, 1969. 283-298.
  • 4Baird L, Moore A W. Gradient descent for general reinforcement learning[J]. Advances in Neural Information Processing Systems, 1999, 11: 968-974.
  • 5Kim M S, Uther W. Automatic gait optimization for quadruped robots[A]. Proceedings of the Australasian Conference on Robotics and Automation[C]. Brisbane, Australia: Australian Robotics and Automation Association, 2003.
  • 6Kohl N, Stone E Policy gradient reinforcement learning for fast quadrupedal locomotion[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway NJ, USA: IEEE, 2004. 2619-2624.
  • 7Zhang J Q, Chen Q J. Lamarckian evolution and Baldwin effect in neural networks[J]. DCDIS A Supplement, Advances in Neural Networks, 2007, 14(S1): 470-473.
  • 8Back T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms[M]. New York, USA: Oxford University Press, 1996.
  • 9Sony Corporation. Model information for ERS-7[EB/OL]. http://www.robots.newcastle.edu.au/QuinlanThesis/ModelInformation_7_E.pdf, 2004.
  • 10Duffert U. Quadruped walking modeling and optimization of robot movements[EB/OL], http://uwe-dueffert.de/publication/ dueffert04_diploma.pdf, 2004-07-22.

同被引文献161

引证文献10

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部