期刊文献+

ELSS:一种降低数据Cache体转换能量的替换策略

ELSS:A Replacement Policy to Save Bank Transition Energy for Data Cache
下载PDF
导出
摘要 随着工艺尺寸的缩小以及频率的增加,漏流能量将成为未来微处理器能量消耗的主要来源。其中,片上Cache存储结构将是整个处理器能量消耗的重要组成部分。为了降低漏流能量,组相联数据Cache中采用了分体的结构,通过使用位线隔离技术将那些未被访问的Cache存储体的位线进行隔离,使之进入低能耗状态。本文提出一种新的数据Cache替换策略——ELSS。该策略充分考虑到访问数据Cache的地址具有较好的空间局部性,特别增加了对数据地址序列中的跨步访问模式的识别,用于指导Cache块的替换。通过将符合顺序模式与跨步模式的数据块尽量放在同一个存储体中,可以减少存储体的转换次数。实验表明,使用ELSS替换策略可以进一步减少位线隔离数据Cache使用LRU策略时9%的体转换次数,多节省8%的数据Cache能量消耗,而对性能的影响比使用LRU策略时小。 As the feature size shrinks and the frequency increases, leakage energy will be the major energy consumer in microprocessors. The large capability caches comprise a large portion of chip energy. In order to reduce the leakage energy, the set-association data caches are divided into several memory banks. Through the hitline isolation technology, memory banks are transitioned to a low-energy state by isolating their bitlines when these banks are not accessed. Frequent bank transitions will discount the energy saved. In this paper, we present a novel energy saving replacement policy called ELSS for data cache. This policy considers the characteristics that there is better spatial locality in the data cache address space, Beside the sequence pattern identification, we also add the stride pattern identification in a sequence of access addresses to direct the replacement of cache lines for reducing the number of hank transitions. The bank transition energy is reduced by redirecting sequential and stride data blocks to the same bank. The experimental results show that ELSS can reduce the bank transition number by 9% and obtain the energy savings over the LRU for hitline isolation data cache by 8%, whereas it has smaller effect on performance.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第1期107-112,共6页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60703074)
关键词 替换策略 体转换 能量 数据 replacement policy bank transition energy data cache
  • 相关文献

参考文献14

  • 1International Technology Roadmap for Semiconductors 2002 Update[EB/OL].[2007-03-25]. http://public.itrs. net/.
  • 2Doyle B, Arghavani R, Barlage D, et al. Transistor Elements for 30nm Physical Gate Lengths and Beyond[J]. Intel Technology Journal, 2002,6(2) : 42-54.
  • 3Flautner K, Kim N S, Martin S, et al. Drowsy Caches: Simple Techniques for Reducing Leakage Power[C]//Proc of ISCA'02, 2002:148-157.
  • 4Kaxiras S, Hu Z, Martonosi M. Cache Decay: Exploiting Generational Behavior to Reduce Cache Leakage Power[C]// Proc of ISCA'01, 2001 : 240-251.
  • 5Yang Se-Hyun. Power-Aware High-Performanee Cache Memory:[PhD Thesis]. 2003.
  • 6Heo S, Barr K, Hampton M, et al. Dynamic Fine-Grain Leakage Reduction Using Leakage-Biased Bitlines[C]//Proc of ISCA'02, 2002.
  • 7Yang S H, Falsafi B. Performance and Energy Trade-Offs of Bitline Isolation in Nanoscale CMOS Caches[C]///Proc of Workshop on Complexity-Effective Design Held in Conjunction with the 30th Int'l Syrnp on Computer Architecture, 2003.
  • 8Su C L,Despain A M. Cache Design Trade-Offs for Energy Efficiency[C]//Proc of the 28th Hawaii Int'l Conf on System Science, 1995.
  • 9Kalla P, Hu X S, Henkel J. LRU-SEQ: A Novel Replacement Policy for Transition Energy Reduction in Instruction Cache[C]//Proc of the Int'l Conf on Computer Aided Design, 2003:518-522.
  • 10Saibhushan M, Shivakumar S, Chu Y. A Replacement Policy to Save Energy for Data Cache[C]//Proc of the 19th Int'l Symp on High Performance Computing Systems and Applications, 2005:72-75.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部