期刊文献+

一种3自由度仿人型假手的肌电控制 被引量:2

EMG control of a 3-DOF anthropomorphic prosthetic hand
下载PDF
导出
摘要 采用支持向量机作为分类器,通过在健康受试者前臂处安放8个表面肌肤干电极提取肌电信号,使用信号均值作为特征,以较高成功率实现人手10种姿态的分类.分类结果加窗后输出至3自由度假手控制器,实现"姿态跟随"以及"位置/力矩迭加"两种控制方法.试验结果表明,手部姿态的多模式识别使得多自由度肌电假手的控制更加柔顺,体现了较高的灵巧性与功能性. Based on the pattern recognition method of supprt vector machine, 10 mode hand gestures have been succeccfully classified by using the average features of electromyograph (EMG) signal extracted from the healthy body's forearm through 8 dry electrodes. By feeding the windowed classifying results into the prosthetic hand's controller, two control methods, "State Following" and "Position/Force Overlaping", are implemented. Experimental results show that the prosthetic hand's control becomes more facile through classifying multi-mode hand gestures, which presents a high dexterity and functionality.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2009年第1期5-9,共5页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(50435040)
关键词 假手 肌电控制 模式识别 支持向量机 prosthetics myoelectric control pattern recognition support vector machine
  • 相关文献

参考文献8

  • 1Gao Xiaohui, Shi Shicai, Zhao Dawei. HIT anthropomorphic robotic hand and finger motion control [J]. Journal of Harbin Institute of Technology, 2006, 13 (1) .49 -51.
  • 2Zhao Jingdong, Xie Zongwu, Jiang Li, et al. Levenbergmarquardt based neural network control for a five-fingered prosthetic hand [ C ] //Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona: IEEE, 2005:4482 - 4487.
  • 3Bitzer S, Smagt P. Learning EMG control of a robotic hand : towards active prostheses [ C ]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, Florida: IEEE, 2006:2819 -2823.
  • 4Cortes C,Vapnik V. Support-vector network [ J]. Machine Learning, 1995, 20:273 - 297.
  • 5王良民,张建明,詹永照,宋顺林.人脸检测研究现状和发展[J].江苏大学学报(自然科学版),2003,24(3):75-79. 被引量:13
  • 6Vapnik V. Statistical Learning Theory [ M ]. New York : Wiley, 1998.
  • 7and the methods Science, training [R]. A study on sigmoid kernels for SVM of non-PSD kernels by SMO-type Taiwan : Department of Computer National Taiwan University, 2003
  • 8Ana Carolina Lorena, Andr'e C P L F de Carvalho. Comparing techniques for multiclass classification using binary SVM predictors [ C 1//Third Mexican International Conference on Artificial Intelligence. Germany, Heidelberg : Springer, 2004 (2972) : 272 - 281.

二级参考文献24

  • 1Yang J, Waibel A. A Real-Tine Face Tracker[C]. In:IEEE Proc of the 3^rd Workshop on ACV, Florida,1996.
  • 2Hongo H, Ohya M, Yasumoto M. Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras[C]. In: pro 4^th IEEE Inter Conf on AFGR,2000.
  • 3Yoo T W, Oh I S. A Fast Algorithm for Tracking Humane Faces Based in Chromatic Histogram[J ]. Pattern Recognition Letters, 1999, 20(10) :967 - 978.
  • 4Yuille A, Hallinan P, Cohen D. Feature Extraction from Faces Using Deformable Templates [ J ]. International Journal of Computer Vision, 1992, 8 (2) : 99 - 111.
  • 5Yang G Z, Huang T S. Human Face Detection in a Complex Background [ J ]. Pattern Recognition, 1994,27(1): 53-63.
  • 6Turk M, Pentland, A. Eigenface for Recognition[J]. JCog Neurosei, 1991,23(3) :71 - 86.
  • 7Moghaddam B, Pentland A. Probabilistic Visual Learning for Object Representation[J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19 (7) :696 - 710.
  • 8Sung K K , Poggio T . Example - Based Learning for View-Based Human Face Detection[J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(1):39-51.
  • 9Rowley H A, Baluja S, Kanade T. Neural Network Based Face Detection[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1998, 20(1) :23 - 38.
  • 10Rowley H A, Baluja S, Kanade T. Rotation Invariant Neural Network Based Face Detection[C]. In:Proceeding of IEEE Computer Society Conference on CVPR'98. California, 1998.

共引文献12

同被引文献42

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部