期刊文献+

一类产出系统的延迟反馈控制 被引量:2

Delayed feedback control of a production system
下载PDF
导出
摘要 将两种延迟反馈控制方法应用到具有不同预期决策规则的双寡头垄断生产模型,一种形式的延迟反馈控制法是对系统变量进行延迟控制;另一种是对系统参数进行延迟控制.其控制目标都是通过对系统变量和参数的延迟使系统稳定到不稳定不动点或均衡点.理论推导和数值模拟证明了此方法的有效性,并解析地给出了收敛条件和控制增益所在的范围.实施控制后的生产模型能快速地达到Nash均衡点,这为现实中的企业提供了理论参考及生产依据. Two forms of delayed feedback control methods are applied to a Duopoly model based on heterogeneous expectations. One delayed feedback stabilizes chaos via state variable; the other suppresses chaos by adjusting system parameters. This control aims to bring this system into instability equilibrium using delay of state variables and parameters. The validity of the control method is proved through theoretical analysis and numerical simulations. Moreover, scope of convergent condition and control intensity are given. It can quickly reach Nash equilibrium after control. So it provides theoretic reference and production condition to real enterprises.
机构地区 江苏大学理学院
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2009年第1期104-108,共5页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10571076 70401013)
关键词 延迟反馈控制 NASH均衡 混沌 分岔 delayed feedback control Nash equilibrium chaos bifurcation
  • 相关文献

参考文献2

二级参考文献13

  • 1Ott E, Grebogi C, Yorke J A. Controlling chaos[J]. Phys. Rev. Lett., 1990, (64): 1196-1199.
  • 2Boccaletti S, Grebogi C. The control of chaos: Theory and applications[ J] . Physics Reports, 2000, 329: 103-197.
  • 3Song Y X, Yu X H, Chen G R. Time delayed repetitive learning control for chaotic systems[J]. International Journal of Bifurcation and Chaos, 2002, 12(5): 1057-1065.
  • 4Yang L, Liu Z R, Mao J M. Controlling hyperchaos[J]. Physics Review Letters, 2000, (84): 67-70.
  • 5Xu H B, Wang G R, Chen S G. Controlling chaos by a modified straight-line stabilization method[J]. Euro. Phys. J .B, 2001,22: 65-69.
  • 6Holyst J A, Urbanowicz K. Chaos control in economical model by time-delayed feedback method[J]. Physic A, 2000, 287: 587-598.
  • 7Kopel M. Improving the performance of an economic system: Controlling chaos[J]. Journal of Evolutionary Economics, 1997,7:269-289.
  • 8Bischi G I, Naimzada A. Global analysis of a dynamic duopoly game with bounded rationality[ A]. In: Dynamics Games and Application[M]. Basel: Birkhouser, 1999. 180-231.
  • 9Mao J M, Liu Z R, Yang L. Straight-line stabilization[ J]. Physics Review E, 2000, 62(4): 4846-4849.
  • 10Ott E. Chaos in Dynamical Systems[M]. Canada: Cambridge University Press, 1993. 130-131.

共引文献15

同被引文献17

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部