期刊文献+

On the Structure of Graded λ-Hopf Algebras 被引量:8

On the Structure of Graded λ-Hopf Algebras
原文传递
导出
摘要 Let G be an abelian group, B the G-graded λ-Hopf algebra with A being a bicharacter on G. By introducing some new twisted algebras (coalgebras), we investigate the basic properties of the graded antipode and the structure for B. We also prove that a G-graded λ-Hopf algebra can be embedded in a usual Hopf algebra. As an application, it is given that if G is a finite abelian group then the graded antipode of a finite dimensional G-graded A-Hopf algebra is invertible. Let G be an abelian group, B the G-graded λ-Hopf algebra with A being a bicharacter on G. By introducing some new twisted algebras (coalgebras), we investigate the basic properties of the graded antipode and the structure for B. We also prove that a G-graded λ-Hopf algebra can be embedded in a usual Hopf algebra. As an application, it is given that if G is a finite abelian group then the graded antipode of a finite dimensional G-graded A-Hopf algebra is invertible.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第1期95-108,共14页 数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China Yangzhou University Natural Science Foundation
关键词 twisted algebra (coalgebra) graded Hopf algebra graded antipode twisted algebra (coalgebra), graded Hopf algebra, graded antipode
  • 相关文献

参考文献15

  • 1Fischman, D., Montgomery, S.: A Schur double centralizer theorem for cotriangular Hopf algebras and generalizer Lie Algebras. J. Algebra, 168, 594-614 (1994)
  • 2Milnor, J. W., Moore, J. C.: O~n the structure of Hopf algebras. Annals of Math, 81, 211-264 (1965)
  • 3Scheunert, M.: Generalized Lie algebras. J. Math. Phys., 20, 712-720 (1979)
  • 4Sun, J. H.: Equivalence of x-Hopf algebras. Acta Mathematica Scientia, 23B(2), 239-246 (2003)
  • 5Sun, J. H., Li, S. Z.: Some constructions of twisted Hopf algebras. Math. Sci. Res. J, 6(7), 354-360 (2002)
  • 6Nastasescu, C., Van Oystaeyen, F.: Graded ring theory, North-Holland, Amsterdam, 1982
  • 7Cohen, M., Montgomery, S.: Group-graded rings, smash products, and group actions, TAMS, 282(1), 237-258 (1984)
  • 8Nastasescu, C., Torrecillas, B.: Graded coalgebras. Tsukuba J. math, 17(2), 461-479 (1993)
  • 9Montgomery, S.: Hopf Algebras and Their Actions on Rings, CBMS Lecture 82, 1993
  • 10Zhang, J. J.: Twisted graded algebras and equivalences of graded categories. Proc. London Math. Soc., 72(3), 281-311 (1996)

同被引文献24

  • 1刘贵龙.模与余模间的对偶[J].数学学报(中文版),1994,37(2):150-154. 被引量:10
  • 2孙建华.关于G-分次环与G-集的Smash积的几个结果[J].Journal of Mathematical Research and Exposition,1996,16(3):436-440. 被引量:2
  • 3Virelizier A.Hopf group-coalgebras[J].Journal of Pure and Applied Algebra,2002,171:75-122.
  • 4Sweedler M E.Hopf algebra[M].New York:Benjiamin,1969.
  • 5Virelizier A.Hopf Group-coalgebras[J].Journal of Pure and Applied Algebra,2002,171:75-122.
  • 6Zunino M.Double Construction for Crossed Hopf Coalgebras[J].J Algebra,2004,278:43-57.
  • 7Wang S H.Coquasitriangular Hopf Group Algebras and Drinfel'd Co-Doubles[J].Communications in Algebra,2007,35(1):77-101.
  • 8Wang S H.Morita Contexts,π -Galois Extensions for Hopf r -coalgebras[J].Communications in Algebra,2006,34(2):521-546.
  • 9Sweedler M E.Hopf Algebra[M].New York:Benjiamin,1969.
  • 10Abe E.Hopf Algebra[M].New York:Combridge University Press,1980.

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部