期刊文献+

图像分解和区域保护在SAR图像压缩中的应用 被引量:2

Decomposing SAR Image and Protecting Target Region for Compression
下载PDF
导出
摘要 在机载通信链路带宽有限的条件下,SAR图像的有损压缩是解决实时性和带宽限制的可行方案。提出了一种基于图像分解的敏感目标区域自动提取与保护的SAR图像压缩策略。首先将SAR图像分解为结构分量和纹理分量,然后在纹理分量中对包含潜在目标的区域进行检测,生成敏感目标区域掩码,最后对潜在目标区域进行保护性的低损压缩,对背景区域进行高损压缩。实验结果表明,恢复后的图像与标准的JPEG2000算法相比在同样的码率条件下具有更好的视觉效果。 The bandwidth restricts airborne communication,so compression airborne SAR image with loss is a feasible way to enhance the real-time performance and image quantity. This paper proposed a SAR image compression strategy which extracts and protects target regions based on image decomposing technology. Firstly, the SAR image is decomposed into structure component and texture component. Then the target information is detected and classified from the texture component to construct ROI mask. Finally, the ROI mask is used to protect the important target information during compression by allocating more bits to it while reducing bit allocation to the residual. The experimental results indicate that the reconstructed image using the proposed approach has better visual effect than those processed by JPEG2000 arithmetic under the same bit rate.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第1期3-7,共5页 Journal of Image and Graphics
基金 "十一五"部委级预研项目(203010203)
关键词 图像分解 自动目标识别图像压缩全变分 image decomposing,automatic target recognition,image compression,total-variation
  • 相关文献

参考文献15

  • 1Franceschettii G, Merolla S, Tesauro M. Phase quantized SAR signal processing: Theory and experiments [ J]. IEEE Transactions on Aerospace and Electronic System, 1999:35( 1 ) :201-214.
  • 2Eddins S, Smith M. A three-source muhirate model for image compression [ A ]. In: Proceedings oflnternational Conference on Acoustics, Speech, and Signal Processing [ C ] , Albuquerque, NM, USA, 1990 : 2098-2092.
  • 3Alan C, Kristo M, Austin L, et al. A compression of detected SAR imagery with JPEG2000 [ A ] . In: Proceedings of SPIE- The International Society for Optical Engineering [ C ], San Diego, CA, USA, 2000, 4115: 510-520.
  • 4Zhai J F, Wang Z S. SAR image compression at very low bit-rate [A]. In: Proceedings of 7th International Conference on Signal Processing[ C] , Beijing, China, 2004, 3:2167-2170.
  • 5Li M T, Guo J B, Zhao J P, et al. Real-time imagery compression method research [ A ]. In : Proceedings of the SPIE, Earth Observing Systems VIII. [C]. San Diego, CA, USA,2003, 5151:531-539.
  • 6Cirillo R, Poehler L, Ziemba N. Adaptive compression algorithm results for complex Synthetic Aperture Radar data [ A ] . In: Proceedings of SPIE, Algorithms for Synthetic Aperture Radar Imagery X[ C ], Orlando FL , ETATS-UNIS,2003, 5095:26-32.
  • 7Hou X S, Liu G Z, Zou Y Y. SAR image data compression using wavelet packet transform and universal-trellis coded quantization[ J ]. IEEE Transactions on Geoscience and Remote Sensing, November 2004, 42( 11 ) :2632-2642.
  • 8Nasrabadi Nasser M, Sattler Joseph P, Kwon Heesung, Rizvi Syed A. High compression of SAR imagery for battlefield surveillance[ M]. SPIE Algorithms for Synthetic Aperture Radar Imagery III, 06/1996, 2757 : 397-408.
  • 9Liu H Q, Hou B , Wang S, et al. SAR image compression using bandelets and SPIHT[ A ]. In :Proceedings of 2006 CIE International Conference on Radar[ C ], Shanghai, China, 2006 : 1-4.
  • 10Yin W, Goldfarb D, Osher S. Total variation based image cartoontexture decomposition [ R ]. CORC TR-2005-01, Columbia , USA : Columbia University, 2005.

二级参考文献7

  • 1Mallat S A. Theory for Multiresolution Signal Decomposition. IEEE Trans PAMI, 1989, 11:675-693.
  • 2Bovik C, Analysis of Multichannel Narrowband Filters for Image Texture Segmentation.lEEE Transactions on Signal Processing, 1991, 39:2025-2043.
  • 3Dennis D M. Texture Segmentation Using 2D Gabor Elementary Functions. IEEE Trans PAMI, 1994, 16(2): 130-149.
  • 4Jain A K,Dubes R C.Algorithms for Clustering Data.Englewood Cliffs: Prentics - Hall, 1994.
  • 5Fatemi-Ghomi hi,Palmer P L.Performance Evaluation of Segmentation Algorithms with Embedded Confidence.In 7th International Conference on Computer Vision, Kerkyra, Greece, 1999-09: 1197-1203.
  • 6Tuceryan M,Jain A K.Chen C H,Pau L F, Wang P S P (Eds).Texture Analysis.Handbook of Pattern Recognition and Computer Vision,World Scientific Publishing Company,1994.
  • 7Valivia J F,Garcia JF.The Selection of Nature Scales in 2D Images Using Adaptive Gahor Filterlng.IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 20 (5): 458- 469.

共引文献5

同被引文献17

  • 1甄小仙,刘哲,马聪.结合级联字典和双层稀疏分解的图像重构[J].汁算机工程与应用,2011,47(23):154-156.
  • 2VESE L A, OSHER S J. Modeling textures with total variation mini- mization and oscillating patterns in image processing[ J]. Journal of Scientific Computing, 2003, 19(1/2/3) : 553 -572.
  • 3STARCK J L, ELAD M, DONOHO D L. Image decomposition via the combination of sparse representations and variational approach [ J]. IEEE Transactions on Image Processing, 2005, 14( 10): 1570 - 1582.
  • 4OSHER S J, SOLE A, VESE L A. Image decomposition and resto- ration using total variation minimization and the H^-1 norm[ J]. Multi- scale Modeling and Simulation: A SIAM Interdisciplinary Journal, 2003, 1(3) : 349 -370.
  • 5LET M, VESE L A. Image decomposition using total variation and div (BMO) * [ J]. Multiscale Modeling and Simulation, 2005, 4(2) : 390 - 423.
  • 6GARNETF J B, LET M, MEYER Y, VESE L A. Image decompo- sition using total variation and homogeneous besov spaces[ J]. Ap-plied and Computational Harmonic Analysis, 2007, 23(1) : 25 -56.
  • 7AMBROSIO L, TORTORELLI V. Approximation of functionals de- pending on jumps by elliptic functionals via F-convergence[ J]. Communication on Pure and Applied Mathematics, 1990, 43(8): 999 - 1036.
  • 8李敏,冯象初.基于小波空间的图像分解变分模型[J].电子学报,2008,36(1):184-187. 被引量:7
  • 9张力娜,冯象初,刘晨华.一种耦合卡通-纹理分解及边缘检测的方法[J].激光与红外,2009,39(5):542-545. 被引量:4
  • 10殷海青,江玲玲,刘红卫.联合纹理提取和边缘检测的新方法[J].系统工程与电子技术,2010,32(4):846-850. 被引量:2

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部