期刊文献+

基干集值模糊测度的实值Choquet积分

Real-valued Choquet Integral Based on Lebesgue-Stieltjes Measure
下载PDF
导出
摘要 首先利用模糊测度选择的定义对Choquet积分进行了推广,定义了基于集值模糊测度的实值Choquet积分,然后讨论了此类积分的几个性质,最后给出几个收敛定理. It first gives the definition of real-valued Choquet Integral based on Lebesgue-Stieltjes measure by making use of fuzzy measurable selector ; Then , it researches some properties of this new integral;Finally,it researches several convergence theorems of this integral.
作者 孙红霞
机构地区 德州学院数学系
出处 《德州学院学报》 2008年第6期15-17,共3页 Journal of Dezhou University
关键词 集值模糊测度 模糊测度选择 CHOQUET积分 set-valued fuzzy measure fuzzy measure selector Choquet integral
  • 相关文献

参考文献6

  • 1Zhang D, Wang X. On set-valued fuzzy integrals[J]. Fuzzy Sets and System, 1993,56 : 237-- 241.
  • 2Guo C, Zhang D. On set-valued fuzzy measures[J]. Information Science, 2004,160 : 13 - 25.
  • 3Jang LC,Kwon JS. On the representation of Choquet integral of set--valued functions and null sets[J]. Fuzzy Sets and System,2000,112:233--239.
  • 4Zhang D,Wang Z. Set-valued Choquet integrals revisited [J]. Fuzzy Sets and System, 2004,147:475--485.
  • 5M. Sugeno. Theory of fuzzy integrals and application EC~. Tokyo : Tokyo Institute of Technology, 1974.
  • 6T. Murofushi, M. Sugeno. An interpretation of fuzzy measure and Choquet integral as an integral with respect to a fuzzy measure[J]. Fuzzy Sets and System, 1989,29..201--227.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部