期刊文献+

一种基于矩阵的秩的特殊的(t,n)门限方案

A Sharing Scheme of the Threshold Secret based on Matrix Rank
下载PDF
导出
摘要 文章提出了一个基于矩阵和向量的特殊的(t,n)秘密共享方案,方案把矩阵的每一行当成一个向量作为成员的子密钥,利用向量的线性相关性和线性无关性来求一个密钥矩阵的秩,拥有这些不线性相关向量的t个人就能共享密钥矩阵,并对该方案的安全性进行了分析. This paper proposes a special sharing scheme of the Threshold Secret based on matrix rank vector , the matrix of every line as a vector as a member's subkey. Using the linear correlation in the suit of key matrix rank, with no linear correlation between the vector individuals will be able to share matrix . In this paper , the safety of the program were analyzed.
出处 《德州学院学报》 2008年第6期18-20,共3页 Journal of Dezhou University
关键词 密钥矩阵 向量 线性相关 key matrix vector linear correlation rank and pur- key
  • 相关文献

参考文献7

二级参考文献33

  • 1刘锋,张建中.一个具有完善保密性的秘密分享方案[J].济南大学学报(自然科学版),2005,19(2):124-125. 被引量:4
  • 2Shamir A. How to share a secret. Comm ACM, 1979,22 (11):612-613.
  • 3Karnin E D,Greene J W. On secret sharing systems. IEEE TransInform Theory, 1983 ,IT-29(1) :35-41.
  • 4Tompa M,Woll H. How to share a secret with cheaters. J Crypto, 1988,1 :133-138.
  • 5Tompa M,Blakley G R. Threshold schemes with disenrollment. In: Proc Crypto 1992 ,Santa Barbara,CA,Aug. 1992.13-1-13-4.
  • 6He J, Dawson E. Multistage secret sharing based on one-way function. Electron Lett,1994,30(19):1591-1592.
  • 7Sun H M ,Shieh S P. Construction of dynamic threshold schemes. Electron Lett, 1994,30 (24), 2023 - 2024.
  • 8Pinch R G E. Online multiple secret sharing. Electron Letts, 1996,32(12) :1087-1088.
  • 9Chor B, Fiat A, Naor M. Tracing Traitors. In: Proc Advances in Cryptology-Crypto '94, Springr-Verlag LNCS 839, 1994. 257-270.
  • 10Stinson D R. Cryptography :Theory and Practice,CRC Press ,Boca Raton, 1995.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部