期刊文献+

一类高维抛物型偏微分方程的粘性解

Viscosity solutions of multidimensional quasilinear parabolic PDEs
下载PDF
导出
摘要 利用两种方法证明由高维正倒向随机微分方程系统的解,给出一类拟线性抛物型偏微分方程系统惟一粘性解。 It was proved with two different methods, that afunction expressed in terms of the solution of a multidimensionalbackward stochastic equation is indeed a unique viscosity solutionof a certain qusilinear parabolic partial differential equation.
作者 黄宗媛 张峰
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第12期5-9,14,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10671112) 山东省自然科学基金资助项目(Z2006A01)
关键词 倒向随机微分方程 偏微分方程 粘性解 比较定理 backward stochastic differential equation partialdifferential equation viscosity solution comparison theorem
  • 相关文献

参考文献7

  • 1PARDOUX E, PENG S. Adapted solution of a backward stochastic differential equation[J]. System and Control Letters, 1990, 14:55- 61.
  • 2PENG S. Probabihstic interpretation for systems of quasihnear parabohc partial differential equations[J]. Stochastics and Stochastics Reports, 1991, 37:61-74.
  • 3PARDOUX E, PENG S. Backward stochastic differential equationsand quasilinear parabolic partial differential equations[M]//Stochastic partial differential equations and their applications. Berlin: Springer-Verlag, 1992.
  • 4HU Y, PENG S. On the comparison theorem for multidimensional BSDEs[J]. C R Acad Sci Paris, 2006, 343:131-140.
  • 5吴臻,于志勇.完全耦合的正倒向随机微分方程及相应的偏微分方程系统[J].数学年刊(A辑),2004,25(4):457-468. 被引量:4
  • 6EL KAROUI N, KAPOUDJIAN C, PARDOUX E, et al. Reflected solutions of backward SDEs, and related obstacle problems for PDEs [J]. The Annals of Probability, 1997, 25(2) :702-737.
  • 7PARDOUX E, TANG S. Forward-backward stochastic differential equatioas and quasilinear parabolic PDEs[J], Probab Theory Relat Fields, 1999, 114:123-150.

二级参考文献12

  • 1[3]Ma, J., Protter, P. & Yong, J., Solving forward-backward stochastic differential equations explicitly - a four step scheme [J], Prob. & Related Fields, 98:2(1994), 339-359.
  • 2[4]Hu., Y. & Peng, S., Solution of forward-backward stochastic differential equations [J],Proba Theory and Related Fields, 103:2(1995), 273-283.
  • 3[5]Peng, S. & Wu, Z., Fully coupled forward-backward stochastic differential equations and applications to optimal control [J], SIAM J. Control Optim., 37:3(1999), 825-843.
  • 4[6]Yong, J., Finding adapted solution of forward-backward stochastic differential equations-method of continuation [J], Proba. Theory and Related Fields, 107:4(1997),537-572.
  • 5[7]Crandall, M., Ishii, Ⅱ. & Lions, P. L., User's guide to viscosity solution of Second order partial differential equations [J], Bull. Amer. Soc., 27:1(1992), 1-67.
  • 6[8]Peng, S, Open Problems on Backward Stochastic Differential Equations [A], Control of Distributed Parameter and Stochastic Systems [M], Chen, S., Li, X., Yong, J., Zhou,X. Y. eds. Boston, Kluwer Acad. Pub., 1999, 265-273.
  • 7[9]Pardoux, E. & Tang, S., Forward-backward stochastic differential equations and quasilinear parabolic PDEs [J], Prob. & Related Fields, 114:2(1999), 123-150.
  • 8[10]Wu, Z., The comparison theorem of FBSDE [J], Statistics and Probability Letters,44:1(1999), 1-6.
  • 9[11]Karoui, El., Kapoudjian, C., Pardoux, E., Peng, S. & Quenez, M. C., Reflected solutions of backward SDE's, and related obstacle problems for PDE's [J], The Annals of Probability, 25:2(1997), 702-737.
  • 10[12]Wu, Z., Adapted solution of generalized forward-backward stochastic differential equations and its dependence on parameters [J], Chinese Journal of Contemporary Mathematics, 19:1(1998), 9-18.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部