期刊文献+

一种基于噪声对消与倒谱均值相减的鲁棒语音识别方法 被引量:3

A robust speech recognition method by combining noise cancelling and cepstral mean subtraction
下载PDF
导出
摘要 提出一种基于语音增强算法的噪声鲁棒语音识别方法.在语音识别预处理阶段,通过噪声对消语音增强法来抑制噪声提高信噪比.然后对增强语音提取Mel频段倒谱特征参数,并在倒谱域应用倒谱均值相减处理来补偿增强语音中的失真成分和剩余噪声.实验结果表明,在低信噪比(-12~0 dB)条件下,该方法对于数字语音识别具有较好的识别率,其性能明显优于基本的Mel频段倒谱参数识别器、传统的谱减法和噪声对消语音增强法. A noise resistant speech recognition method based on a speech enhancement algorithm was implemented. First, it obtains the denoised speech, with significant SNR (signal-to-noise ratio) improvement, by applying adaptive noise cancelling (ANC) to the pre-treatment stage of speech recognition. Then Mel-frequency cepstral coefficients(MFCC) are computed from the enhanced speech. Then cepstral mean subtraction (CMS) is used to compensate for components of distortion and the residual noise of the enhanced speech in the cepstral domain. When speech samples have a low SNR, ranging from 0 to 12 dB, experimental results indicate that the proposed method performs better than a standard MFCC recognizer, conventional spectral subtraction (SS) and the ANC speech enhancement for digital speech recognition.
出处 《智能系统学报》 2008年第6期552-556,共5页 CAAI Transactions on Intelligent Systems
基金 江苏省博士后科研基金资助项目(0701008C) 中国博士后科学基金资助项目(20070420561)
关键词 自适应噪声对消 语音增强 谱减法 噪声鲁棒语音识别 倒谱均值相减法 adaptive noise cancelling speech enhancement spectral subtraction noise robust speech recognition cepstral mean subtraction
  • 相关文献

参考文献7

  • 1[1]STEVEN F B.Suppression of acoustic noise in speech using spectral subtraction[J].IEEE Trans on Speech and Audio Processing,1979,27(2):113-120.
  • 2[5]MAMMONE R J,ZHANG Xiaoyu,RAMACHANDRAN R P.Robust speaker recognition:a feature-based approach[J].IEEE Signal Processing Magazine,1996,13(5):58.
  • 3[6]DAVIS S B,MERMELSTEIN P.Comparison of parametricrepresentations of monosyllabic word recognition in continuously spoken sentences[J].IEEE Trans on Speech and Audio Processing,1980,28(4):357-366.
  • 4[7]HERMANSKY H,MORGAN N.RASTA processing of spe-ech[J].IEEE Trans on Speech and Audio Processing,1994,2(4):578-589.
  • 5[8]HERMANSKY H.Perceptual linear predictive (PLP) analysis of speech[J].J Acoust Soc Am,1990,87(4):1738-1752.
  • 6[9]LIU F H,ACERO A,STERN R.Efficient joint compensation of speech for the effects of additive noise and linear filtering[C]//IEEE International Conference on Acoustics,Speech,and Signal Processing.San Francisco,USA,1992(1):257-260.
  • 7[11]VIILDU O,BYE D,IAURILA K.A recursive feature vector normalization approach for robust speech recognition in noise[C]//Proceedings'ICASSP'98.Seattle,WA,USA:IEEE Acoustics,Speech and Signal Processing Society,1998:733-736.

同被引文献23

  • 1任治刚.基于MATLAB/Simulink的回声和噪声控制算法开发[J].系统仿真学报,2005,17(z2):77-78. 被引量:1
  • 2汤玲,戴斌.抗噪声语音识别及语音增强算法的应用[J].计算机仿真,2006,23(9):80-82. 被引量:5
  • 3杨三胜,刘海峰,付君,张国强.AMBE-2020在语音通信系统中的应用[J].舰船电子工程,2006,26(5):146-149. 被引量:3
  • 41 Shajith, et al. Phase auto correlation(PAC) features noise robust speech rcc'ognition [ J . Speech Communication, 2012,54 ( 7 ) : 867 - 880.
  • 5T A|exandrns, et al. Automatic speech recognition performance in different room acoustic environments with and without dereverbera- tion preprocessing[ J]. Computer Speech anti Language, 2013,27 (1) :380 -395.
  • 6H lwano, K Shinoda. Spectral subtraction based on non - extensive statistics |or speech recognition Pardede [ J ]. IEICE Transactions on Information and Systems, 2013, E96 - D( 8 ) : 1774 - 1782.
  • 7V P Jesus, D M Femando, K W Bastiaan. The synergy between bounded - distance HMM and spectral subtraction for robust speech recognition [ J ]. Speech Communication, 2010,52 ( 2 ) : 123 - 133.
  • 8J W Hung, W H Tu, C C l,ai. Improved modulation spectnJm en- hancement methods for rohust speech recognition [ J ]. Signal Pro- cessing, 2012,92(1/) :2791 -2814.
  • 9E Ozerov, B F Vincent. A general modular framework tbr audio source separation : Saint - Main,2010 [ C ]. France, in 9th Interna- tional Conference on Latent Variable Analysis and Signal Separation ( I,VA/ICA ' 10), 2010:33 -40.
  • 10Yu Shao, Chip - Hong Chang. Bayesian Separation With Sparsity Promotion in Perceptual Wavelet Donmin fur Speech Enhancement and Hybrid Speec, h Recognition[ J ]. Systems, Man anti Cybernet- ics, Part A: Systems and Humans, IEEE Transactions on, 2011, 41 (2) :284 -293.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部