期刊文献+

基于数据挖掘的客户细分技术

Client segmentation based on data mining Algorithm
下载PDF
导出
摘要 针对数据挖掘算法中的聚类算法在聚类不规格形状数据点分布的处理难题,对基于密度梯度的聚类算法进行了研究。通过分析数据样本及其周边的点密度变化情况,选择沿密度变化大的方向寻找不动点,从而获取原始聚类中心,再利用类间边界点的分布情况对小类进行合并。阐述了基于密度梯度的聚类算法以及应用此算法进行电信行业客户细分的方法、步骤和案例。 Aimed to solve difficult problems in clustering algorithm based on density gradient is presented. With an points with the maximum density are searched and taken as with irregularly distributed data set, a new clustering alyses o original f density of each point and its neighbors, centers of clusters. Then some little clusters are combined into larger clusters according to the distribution of border points between clusters. This clustering algorithm can be used in the study of client segmentation in the field of telecom. Detailed discussions are then focused on the proposed clustering algorithm and its applications in telecom clients segmentation including methods, steps and cases
出处 《深圳信息职业技术学院学报》 2008年第4期61-66,75,共7页 Journal of Shenzhen Institute of Information Technology
关键词 聚类 模式分类 数据挖掘 电信 客户细分 clustering pattern classification data mining telecom client segmentation
  • 相关文献

参考文献2

  • 1蔡颖琨,谢昆青,马修军.屏蔽了输入参数敏感性的DBSCAN改进算法[J].北京大学学报(自然科学版),2004,40(3):480-486. 被引量:39
  • 2J?rg Sander,Martin Ester,Hans-Peter Kriegel,Xiaowei Xu. Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications[J] 1998,Data Mining and Knowledge Discovery(2):169~194

二级参考文献4

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部