期刊文献+

拟半连续格和交半连续格 被引量:8

Quasi-semicontinuous Lattices and Meet-semicontinuous Lattices
下载PDF
导出
摘要 作为半连续格的推广,引入了拟半连续格的概念。讨论了拟半连续格的基本性质。在拟半连续格上得到了类似于拟连续偏序集的一些主要结果。同时探讨了半连续格、拟半连续格、交半连续格、交连续格、强连续格几种不同结构之间的关系。最后,讨论了半连续函数空间仍是半连续格的条件。 As a generalization of semicontinuous lattices, the quasi-semicontinuous lattice is introduced and its some basic properties are investigated. The main results of the theory of semicontinuous lattices are carried to quasi-semicontinuous lattices. Moreover, the relation among quasi-semcontinuous lattices, meetcontinuous lattices, meet-semicontinuous lattices, semicontinuous lattices and strongly continuous lattices is studied. Finally the conditions under which the function space of semicontinuous lattices is semicontinuous are discussed.
出处 《模糊系统与数学》 CSCD 北大核心 2008年第6期11-16,共6页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(10771056) 湖南省自然科学基金资助项目(06JJ2004108JJ3132)
关键词 〈=-关系 拟半连续格 交半连续格 强半连续映射 函数空间 Quasi-semicontinuous Lattice Meet-semicontinuous Lattice 〈=-relation Strongly Semicontinuous Mapping Function Space
  • 相关文献

参考文献11

  • 1Gierz G, Lawson J D, Stralka A. Quasicontinuous posets[J]. Houston J. Math. , 1983,9 : 191-208.
  • 2Venugapolan P. Quasicontinuous posets[J]. Semigroup Forum,1990,41:193-200.
  • 3徐晓泉,刘应明.Z-拟连续domain上的Scott拓扑和Lawson拓扑[J].数学年刊(A辑),2003,24(3):365-376. 被引量:33
  • 4徐晓泉,寇辉,黄艳.Rudin性质与拟Z-连续Domain[J].数学年刊(A辑),2003,24(4):483-494. 被引量:16
  • 5Zhao D. Semicontinuous lattice[J]. Algebraic Universalis, 1997,37 : 458-476.
  • 6Powers R C, Riedel T. Z-semicontinuous posets[J]. Order, 2003,20 : 365-371.
  • 7Ray Y. Semiprime ideals in general lattices[J]. J. Pure and Applied Algebra, 1989,56:105-118.
  • 8Gierz G, et al. Continuous lattices and domains[M]. Cambridge University Press,2003.
  • 9Baranga A. Z-continuous posets[J]. Discrete Math. , 1996,152 : 33-45.
  • 10Liu Y M, Liang J H. Solutions to two problems of J. D. Lawson and M. Mislove[J]. Topology Appl. , 1996,69:153-164.

二级参考文献34

  • 1Heckmann, R., An upper power domain construction in terms of strongly compact sets[M], Lecture Notes in Computer Science, Vol.598, Springer-Verlag, New York, 1992,272-293.
  • 2Rudin, M. E., Directed sets with converge [A], in: Proc. Riverside Symposium on Topology and Modern Analysis [C], 1980, 305-307.
  • 3Hofmann, K. H. & Mislove, M., Local compactness and continuous lattices [M], Lecture Notes in Mathematics, Vol. 871, Springer-Verlag, New York, 1981, 125-158.
  • 4Kou, H., Uk-admitting dcpos need not be Sober [A], in: Domain and Process [M],Kluwer Academic Publishers, 2001, 41-50.
  • 5Bernays, P., A system of axiomatic set theory Ⅲ [J], J. of Symbolic Logic, 7(1942),65-89.
  • 6Xu, X. Q., Strictly complete regularity of the Lawson topology on a continuous poset[J], Topology and its Applications, 103(2000), 37-42.
  • 7Scott, D. S., Continuous lattices [M], Lecture Notes in Math., Vol. 274, Springer-Verlag,1972, 97-136.
  • 8Lawson, J. D., Topological semilattices with small semilattices [J], J. London Math.Soc., 2(1969), 719-724.
  • 9Plotkin, G. D., A powerdomain construction [J], SIAM J. of Computing, 5(1976), 452-487.
  • 10Abramsky, S. & Jung, A., Domain theory [M], Handbook of Logic in Comuter Sci., Vol.3, Clarendon Press, Oxford, 1994.

共引文献36

同被引文献48

引证文献8

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部