期刊文献+

半连续格和半代数格的映射性质 被引量:7

Mapping Properties of Semicontinuous Lattices and Semialgebraic Lattices
下载PDF
导出
摘要 研究了半连续格及半代数格的一些映射性质,讨论了强连续格的函数空间,给出了强连续格到方体的嵌入定理。 In the paper, some mapping properties of semicontinuous lattices and semialgebraic lattices are investigated, the function spaces of strongly continuous lattices are discussed, and an embedding theorem for strongly continuous lattices into cubes is given.
出处 《模糊系统与数学》 CSCD 北大核心 2008年第6期17-23,共7页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(1033101010861007) 江西省自然科学基金资助项目(04110252007GZS0179) 江西师范大学博士基金资助项目
关键词 半连续格 强连续格 半代数格 嵌入 函数空间 Semicontinuous Lattice Strongly Continuous Lattice Semialgebraic Lattice Embedding Function Space
  • 相关文献

参考文献10

  • 1Abramsky S, Jung A. Domain theory[Z]. Handbook of Logic in Comuter Sci. ,Vol. 3[Z]. Oxford:Clarendon Press, 1994.
  • 2Bandelt H J, Erne M. The category of Z-continuous posets[J]. J. Pure and Appl. Algebra, 1983,30: 219-226.
  • 3Baranga A. Z-continuous posets[J]. Discrete Math. , 1996,152 : 33-45.
  • 4Gierz G, et al. A compendium of continuous lattices[M]. Berlin :Springer-Verlag, 1980.
  • 5Gierz G, Lawson J D. Generalized continuous and hypereontinuous lattices[J]. Rocky Mountain J. Math. ,1981,11: 271-296.
  • 6Gierz G, Lawson J D, Stralka A. Quasicontinuous posets[J]. Houston J. Math,1983,9:191-208.
  • 7Xu X Q. Construction of homorphism of M-continuous lattices[J]. Trans. of Amer. Math. Soc. ,1995,347:3167-3175.
  • 8徐晓泉,寇辉,黄艳.Rudin性质与拟Z-连续Domain[J].数学年刊(A辑),2003,24(4):483-494. 被引量:16
  • 9徐晓泉,罗懋康,黄艳.拟Z-连续domain和Z-交连续domain[J].数学学报(中文版),2005,48(2):221-234. 被引量:13
  • 10Zhao D. Semieontinuous lattices[J]. Algebra Universalis, 1997,37 : 458-476.

二级参考文献32

  • 1Heckmann, R., An upper power domain construction in terms of strongly compact sets[M], Lecture Notes in Computer Science, Vol. 598, Springer-Verlag, New York, 1992,272-293.
  • 2Jung, A., Cartesian closed categories of domains [M], CWI Tract 66, Amsterdam, 1989.
  • 3Rudin, M. E., Directed sets with converge [M], in: Proc. Riverside symposium ontopology and modern analysis, 1980, 305-307.
  • 4Venugopolan, P., Z-continuous posets [J], Houston J. Math., 12(1986), 275-294.
  • 5Venugopolan, P., Quasicontinuous posets [J], Semigroup Forum, 41(1990), 193-200.
  • 6Abramsky, S. & Jung, A., Domain theory [M], Handbook of Logic in Comuter Sci., Vol.3, Clarendon Press, Oxford, 1994.
  • 7Bandelt, H. J. & Erne, M., The category of Z-continuous posets [J], J. Pure and Appl.Algebra, 30(1983), 219-226.
  • 8Baranga, A., Z-continuous posets [J], Discrete Math., 152(1996), 33-45.
  • 9Gierz, G. & Lawson, J. D., Generalized continuous and hypercontinuous lattices [J],Rocky Mountain J. Math., 11(1981), 271-296.
  • 10Gierz, G., Lawson, J. D. & Stralka, A., Quasicontinuous posets [J], Houston J. Math.,9(1983), 191-208.

共引文献19

同被引文献37

  • 1伍秀华,李庆国,许任飞.半连续格的性质[J].模糊系统与数学,2006,20(4):42-46. 被引量:12
  • 2伍秀华,李庆国.半连续格的刻画和映射[J].Journal of Mathematical Research and Exposition,2007,27(3):654-658. 被引量:16
  • 3Gierz G, et al. Continuous lattices and domain[M]. Canbridge University Press,2003.
  • 4Gierz G, Lawson J D, A Stralka. Quasicontinuous posets,Houston[J]. Journal of Math. ,1983,2:191-208.
  • 5Venugopalan P. A generalization of completely distributive lattiees[J]. Algebra Universalis,1990,27:578-586.
  • 6Zhao D. Semicontinuous lattices [J ]. Algebre Universalis, 1997,37:458- 476.
  • 7Weng Kin Ho, Zhao D S. Lattices of Scott-closed set[J]. Comment. Math. Univ. Carolin. ,2009,50(2):297-314.
  • 8Scott D S. Continuous latticesrJ]. Lecture Notes in Mathematics, 1972,274 : 97-136.
  • 9Gierz G, Hofmann K H, Keimel K, Lawson J D, Mislove M, Scott D S. Continuous lattices and domainsEM3. Cambridge :Cambridge University Press, 2003.
  • 10Baranga A. Z-continuous posets[-J]. Discrete Mathematics, 1996,152 (1) .. 33-45.

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部