期刊文献+

基于MARMA模型的SAR图像SVM分割 被引量:1

Support vector machine segmentation of SAR images based on MARMA model
下载PDF
导出
摘要 在分析SAR图像特征的基础上,提出一种新的基于多尺度自回归滑动平均(multiscale autoregressive moving average,MARMA)模型的SAR图像分割方法.首先建立多尺度序列,然后通过研究SAR纹理图像的MARMA模型,建立适合SAR图像的多尺度特征矢量,最后采用提出的广义加权支持向量机进行特征分类.实验结果表明,采用此分割方法可以获得很好的分割结果. According to the characteristics of SAR imagery, the support vector machine segmentation of SAR images was proposed based on multiscale autoregressive moving average (MARMA) model, which can capture the statistical scale-dependency of SAR images. Firstly, the multiscale sequences of SAR image were constructed. Secondly, methods for establishing MARMA model and extracting the multiscale stochastic characteristics of different SAR texture images were investigated. Finally, the characteristic vectors were classified using generalized weighted SVM. Experiments show the efficiency of the proposed algorithm.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第12期1359-1364,共6页 JUSTC
基金 国家高技术研究发展(863)计划资助
关键词 SAR图像 多尺度自回归滑动平均模型 加权支持向量机 图像分割 SAR images multiscale autoregressive moving average (MARMA) model weighted support vector machine image segmentation
  • 相关文献

参考文献10

  • 1Fosgate C, Irving W, Karl W, et al. Multiscale segmentation and anomaly enhancement of SAR imagery[J]. IEEE Transactions on Image Processing, 1997, 6(1):7-20.
  • 2Irving W, Novak L, Willsky A S. A multiresolution approach to discrimination in SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems. 1997, 33(4): 1 157-1 169.
  • 3Schroeder J, Howard D. Multiscale modelling for target detection in complex synthetic aperture radar imagery[C]// Proceedings of IEEE Conference on Information, Decision and Control. Adelaide: IEEE Press, 1999: 77-82.
  • 4Kim A J, Krim H, Willsky A S. Segmentation and compression of SAR imagery via hierarchical stochastic modeling[C]//IGARSS 2000. Honolulu: IEEE Press, 2000, 6(6):2 635-2 638.
  • 5高清维,李军,解光军,庄镇泉.SAR图像平稳小波变换相干斑抑制方法[J].中国科学技术大学学报,2002,32(5):566-572. 被引量:4
  • 6李元诚,方廷健,郑国祥.短期电力负荷预测的小波支持向量机方法研究[J].中国科学技术大学学报,2003,33(6):726-732. 被引量:22
  • 7王晔,黄上腾.基于间隔区域样本数量的加权支持向量机[J].计算机工程,2006,32(6):31-33. 被引量:4
  • 8薛景浩,章毓晋,林行刚.基于特征散度的图像FCM聚类分割[J].模式识别与人工智能,1998,11(4):462-467. 被引量:15
  • 9Chanyagom P, Eom K B. Texture segmentation using moving average modeling approach[C]// Proceedings of the International Conference on Image Processing. Vancouver: IEEE Press, 2000, 2(2): 116-119.
  • 10倪玲,张剑清,姚巍.基于小波的SAR影像纹理分析[J].武汉大学学报(信息科学版),2004,29(4):367-370. 被引量:10

二级参考文献25

  • 1唐健,王贞松.利用小波分析来抑制合成孔径雷达图象的相干斑噪声[J].电子科学学刊,1997,19(4):451-458. 被引量:21
  • 2[1]Hippert H S, Pefreira C E, Souza R C. Neural Network for Short-Term Load Forecasting: A Review and Evaluation [ J ]. IEEE Trans on Power System, 2001,16(2) :44-54.
  • 3[2]VN Vapnik. The nature of statistical learning theory[M]. New York: Springer, 1995. 72-236.
  • 4[3]Muller K R, Smola A J, Ratsch G, et al. Prediction Time Series with Support Vector Machines[ C]. Proc of ICANN97,Springer LNCS 1327:999-1 004.
  • 5[4]Francis E H Tay, Cao Li-juan. Application of support vector machines in financial time series forecasting [J]. Omega, 2001,29:232-239.
  • 6[5]Bo-Juen Chen, et al. Load forecasting using support vector machines: A study on EUNITE competition 2001 [ DB/OL ]. Available at http ://neuron. tuke. sk/competition/
  • 7[6]Zhang Q, Benveniste A. Wavelet Network[J].IEEE Trans on Neural Network, 1992, 3(9):889-898.
  • 8[7]Smola A J. Learning with Kernels [ D ]. PhD thesis, Technische Universitat Berlin, 1998.
  • 9[8]Ralotomamenjy A, Canu S. Learning, frame,reproducing kernel and regularization [ R ].Technical Report TR2002-01, perception, systemes et Information, INSA de Rouen, 2002.
  • 10[9]Shevade S K, Keerthi S C. Bhattacharyy et al.Improvements to SMO algorithm for SVM regression [ J ]. IEEE Trans on Neural Networks,2000,11(5) :1 188-1 193.

共引文献50

同被引文献14

  • 1赵英男,杨静宇.基于Gabor滤波器的特征抽取技术[J].吉首大学学报(自然科学版),2006,27(5):59-62. 被引量:5
  • 2郑肇葆.基于蚁群行为仿真的影像分割[J].武汉大学学报(信息科学版),2005,30(11):945-949. 被引量:10
  • 3苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 4NG H, Ong S, Fooge K, et al. Image segmentation using Kmeans clustering and improved watershed algorithm[C]// Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation,2006:61-65.
  • 5Baatz M, Schape A. Object-oriented and multi-scale image analysis in semantic networks[C]//Proceedings of the 2nd International Symposium on Operationalization of Remote Sensing, 1999 :16-20.
  • 6Mitra P, Shankar B U, Pal S K. Segmentation of multispectral remote sensing images using active support vector machines [J ]. Pattern Recognition Letters, 2004, 25: 1067-1074.
  • 7Sahbi H, Geman D, Mach J. A hierarchy of support vector machines for pattern detection [J]. Journal of Machine Learning Research, 2006,7 : 2087-2123.
  • 8Vapnik V. The nature of statistical learning theory [M]. New York:Springer Verlag, 1995 : 9 -60.
  • 9Rifkin R, Klautau A. In defense of one vs all classification [J]. Journal of Machine Learning Research, 2004, 5:101-104.
  • 10Platt J C, Cristianini N, Shawe Taylor J. Large margin DAGs for muhiclass classification[C]//Advances in Neu- ral Information Processing Systems. MIT Press, 2000: 547-553.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部