期刊文献+

基于DAQL算法的动态频谱接入方案 被引量:3

Dynamic spectrum access based on DAQL
下载PDF
导出
摘要 针对传统的动态频谱接入方案一般没有考虑自主性,不具备普适性这一缺点,提出了一种基于双动作Q学习算法DAQL(double action Q-learning)的频谱接入方案,该方案将DAQL引入到多授权用户存在的环境下频谱接入问题中,用以降低接入未知频谱环境时的冲突概率。仿真结果表明,提出的方案与随机接入方案相比,不但有更小的冲突概率,而且能动态适应环境的变化,适合认知无线电的需要。 As for the traditional dynamic spectrum access schemes that are not fit to all kinds of instances and do not consider the ability of self-determination, a scheme based on Double action Q-learning (DAQL) was proposed to solve the problem of dynamic spectrum access. This scheme could reduce the collision probability when accessing unknown spectrum by introducing DAQL into the scenario where there were many licensed users. Simulation results show that this scheme has lower collision probability than random access scheme, and can be adaptive to the change of environment so that it can satisfy the need of cognitive radio.
出处 《解放军理工大学学报(自然科学版)》 EI 2008年第6期607-611,共5页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家863计划资助项目(2007AA01Z267) 国家973计划资助项目(2009CB3020402)
关键词 强化学习 Q学习 双动作Q学习算法 冲突概率 reinforcement learning Q-learning DAQL (double action Q-learning) collision probability
  • 相关文献

参考文献9

  • 1HAYKIN S. Cognitive radio: brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005,23 (2) : 201-220.
  • 2KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: a survey[J].Journal of Artificial Intelligence Research, 1996 (4) :237-285.
  • 3NIE J, HAYKIN S. A Q-learning-based dynamic channel assignment technique for mobile communication systems[J]. IEEE Trans on Vehicular Technology, 1999, 48: 1676-1687.
  • 4张永靖,冯志勇,张平.基于Q学习的自主联合无线资源管理算法[J].电子与信息学报,2008,30(3):676-680. 被引量:9
  • 5WATKINS C J C H. Learning from delayed rewards[D]. Cambridge: Cambridge University, 1989.
  • 6WATKINS C J C H, DAYAN P. Q-learning[J]. Machine Learning, 1992,8:279-292.
  • 7NGAI D C K, YUNG N H C. Double action Q-learning for obstacle avoidance in a dynamically changing environment[C]. Las Vegas: Proceedings of the 2005 IEEE Intelligent Vehicles Symposium, 2005.
  • 8NGAI D C K, YUNG N H C. Performance evaluation of double action Q-Learning in moving obstacle avoidance problem[C]. Hawaii:Proceedings of the 2005 IEEE International Conference on Systems, Man, and Cybernetics, 2005.
  • 9WAEL ABD-ALMAGEED, ALY I EL-OSERY, CHRISTOPHER E S. Estimating time-varying densities using a stochastic learning automaton [J]. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 2006,10(11):1007-1020.

二级参考文献10

  • 1Song Q and Jamalipour A. Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques[J]. IEEE Wireless Commun., 2005, 12(3): 42-48.
  • 23GPP TR 25.881 v5.0.0. Improvement of RRM across RNS and RNS/BSS (Release 5) [OL]. http://www.3gpp.org, Dec. 2001.
  • 3IST-2003-507995 Project E2R (End-to-End Reconfigurability) [OL]. http://e2r.motlabs.com, Jan. 2004.
  • 4Agusti R, Salient O, and Perez-Romero J, et al.. A fuzzyneural based approach for joint radio resource management in a beyond 3G framework[C]. First Int. Conf. on Quality of Service in Heterogeneous Wired/Wireless Networks, Barcelona, Mar. 2004: 216-224.
  • 5Luo J, Mohyeldin E, and Dillinger M, et al.. Performance analysis of joint radio resource management for reconfigurable terminals with multi-class circuit-switched services[C]. Wireless World Research Forum 12th Meeting, Toronto, Nov. 2004: 138-150.
  • 6Zhang Y, Zhang K, and Ji Y, et al.. Adaptive threshold joint load control in an end-to-end reconfigurable systemiC]. IST Mobile and Wireless Summit 2006, Mykonos, Jun. 2006: 332-337.
  • 7Kaelbling L P, Littman M L, and Wang X, et al..Reinforcement learning: a survey[J]. Journal of Artificial Intelligence Research, 1996, 4(2): 237-285.
  • 8Nie J and Haykin S. A Q-learning-based dynamic channel assignment technique for mobile communication systems[J]. IEEE Trans. on Vehicular Technology, 1999, 48(5): 1676- 1687.
  • 9Watkins C J C H and Dayan P. Q-learning[J]. Machine Learning, 1992, 8(3): 279-292.
  • 10Radunovic B, Le Boudec J Y. Rate performance objectives of multihop wireless networks[J]. IEEE Trans. on Mobile Computing, 2004, 3(4): 334-349.

共引文献8

同被引文献21

  • 1杨光,余凯,章魁,张平.基于IEEE 802.11e MAC的联合无线资源管理[J].重庆邮电学院学报(自然科学版),2005,17(6):662-666. 被引量:1
  • 2WU GANG, HAVINGA P J M, MIZUNO M. Wireless Internet over heterogeneous wireless networks [ C]// Global Tel Conference. San Antonio: IEEE Press, 2001:1759 - 1765.
  • 33GPP TR 25. 881 v5.0.0. Improvement of RRM across RNS and RNS/BSS ( Release 5) [ EB/OL]. [ 2010 - 09 - 01 ]. http://www. 3 gpp. org.
  • 4SONG QINGYANG, JAMALIPOUR A. Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques [ J]. IEEE Transactions on Wireless Communications, 2005, 12(3): 42-48.
  • 5SUTTON R S, BARTO A G. Reinforcement learning: An introduction[ J]. IEEE Transactions on Neural Networks, 2005, 16( 1):285 - 286.
  • 6MATARIEN M J. Reinforcement learning in the multirobot domain [J]. Autonomous Robot, 1997, 4(1): 76-79.
  • 7SAKER L, JEMAA S B, ELAYOUBI S E. Q-learning for joint access decision in heterogeneous networks [ C]// WCNC'09: Proceedings of the 2009 IEEE conference on Wireless Communications & Networking Conference. Piscataway: IEEE Press, 2009:1904-1908.
  • 8NIE J, HAYKIN S. A Q-learning-based dynamic channel assignment technique for mobile communication systems [ J]. IEEE Transactions on Vehicular Technology, 1999, 48(5) : 1676 - 1687.
  • 9ALEXANDRI E, MARTINEZ G, ZEGHLACHE D. Adaptive joint call admission control and access network selection for multimedia wireless systems [ C]// The 5th International Symposium on Wireless Personal Multimedia Communications. Honolulu, USA: IEEE, 2002:1390 - 1394.
  • 10张永靖,冯志勇,张平.基于Q学习的自主联合无线资源管理算法[J].电子与信息学报,2008,30(3):676-680. 被引量:9

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部