期刊文献+

超静定Γ型刚架的置换原理解答 被引量:1

Solution of Statically Indeterminate Frame with Shape Γ Based on Principle of Conversion
下载PDF
导出
摘要 介绍多种梁的挠曲线与其置换梁的挠曲线的关系研究,给出了求解各梁位移的置换法转角方程和置换原理中的转角连续性关系.鉴于对Γ型刚架的求解中稀有几何类方法的情况,运用所述的置换法和置换原理,把解梁问题的手段应用于该型刚架的解算.策划、归纳了求该型超静定刚架不同约束类型时的步骤.具体求解过程所用的计算为代数方程的分式四则运算,方法较通俗简便,结果是解析解. The research works on the relationship between the deflection curves of various kinds of beams and cantilever beam. It presents the equation of slope rotation angle by the conversion method and the continuity relationship of slope rotation angles by the principle of conversion. Owing to lack of geometric method for calculating frames with shape Г, the conversion method used to calculate the beams and the principle of conversion are employed to resolve the frames now. It puts forward the analyzing steps of the solution of statically indeterminate frame with shape Г by the conversion method and the principle of conversion. Different types of constraint are considered. The concrete process of calculation belongs to primary computation of algebraic equation. Easy to understand, it gets analytic solution.
作者 喻晓今
出处 《华东交通大学学报》 2008年第6期1-5,共5页 Journal of East China Jiaotong University
基金 华东交通大学科研基金(06ZKTM05)
关键词 置换法 比拟 位移 内力 Г型刚架 conversion method analogy displacement internal force frame with shape Г
  • 相关文献

参考文献4

二级参考文献14

  • 1喻晓今.求超静定等直梁的置换法[J].工程力学,2007,24(z1):66-69. 被引量:10
  • 2喻晓今.求梁位移的比拟梁法[J].东华理工学院学报,2004,27(4):398-400. 被引量:11
  • 3孙训方.材料力学[M].北京:人民教育出版社,1981..
  • 4樊映川 等.高等数学讲义[M].北京:人民教育出版社,1964.188.
  • 5[4]Robert L M.Machine elements in mechanical design[M].Beijing:Pearson Education North Asia Limited and China Machine Press,2003.
  • 6[5]James M G.Mechanics of materials[M].Beijing:Thomson Learning Asia and China Machine Press,2003.
  • 7[8]Hearn E J.Mechanics of materials[M].Headington Hill Hall:Pergamon Press Ltd.,1977.
  • 8刘鸿文.材料力学[M].北京:人民教育出版社出版,1979.
  • 9James M Gere.Mechanics of Materials[M].北京:机械工业出版社,2003.
  • 10于仁才,刘文顺.结构力学[M].北京:国防工业出版社,2007..

共引文献12

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部