期刊文献+

海天混杂闪烁背景下运动点目标检测新方法 被引量:1

Novel method for moving point target detection under glint and clutter background of sea-sky blending
下载PDF
导出
摘要 针对海天混杂闪烁背景及单像素运动点目标的特征,设计了海天相连区域快速定位及基于模式分类的环域全向差分扩展中-均值滤波的预处理算法,二次进行全向差分均值滤波后,利用基于直方图的自适应阈值分割得到初步侯选目标点.形态学滤波保留有效的单像素侯选点,最后进行帧间侯选目标点之间的相关性分析和目标短时丢失的直接再搜索.仿真实验采用两个实拍场景中加入单像素仿真目标生成的220帧图像,结果为:信噪比≥0.5时单帧检测率为91%,3帧以上的连续检测中检测率达到95%;对照组22帧不含仿真点目标,3帧以上的连续检测虚警数为0. Based on the features of glint and clutter sea-sky blending background as well as point target with one pixel, a fast location algorithm for sea-sky blending area and an extended median-mean filter for all direction ring-neighborhood difference data based on pattern classification were designed as pre-processing methods. The all-direction difference was re-carried out again so that candidates of point target can be detected by segmentation with an adaptive threshold based on histogram. The morphologic filter was used to keep point targets with only one pixel. Finally the moving point target and its trajectory can be detected in sequence images based on trajectory matching and direct search if mismatching occurs. The simulation results with 220 frame images which were made by adding simulation point target in real images show that moving point targets with signal to noise ratio (SNR) not lower than 0.5 can be detected effectively: the correct detection rate is 91% in one frame and 95% in a sequence of three frames, in addition the false alarm in a sequence of three frames does not occur for the 22 frame images without simulation point target.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第12期1384-1387,共4页 Journal of Beijing University of Aeronautics and Astronautics
关键词 海天混杂闪烁背景 点目标 模式分类 扩展中-均值滤波 glint and clutter sea-sky blending point targets pattern classification extended medianmean filter
  • 相关文献

参考文献5

二级参考文献42

  • 1马治国,王江安,宗思光.海天线附近红外弱点目标检测算法研究[J].激光与红外,2004,34(5):389-390. 被引量:10
  • 2赵宇明,李介谷.序列图像(亚)像素级点目标检测的DP算法[J].上海交通大学学报,1995,29(6):145-147. 被引量:4
  • 3Reed I S, Gagliardi R M, Stotts L. Optical moving target detection with 3-D matched filtering. IEEE Trans. AES., 1988, 24(4): 327-335
  • 4Reed I S, Gagliardi R M, Stotts L. A recursive moving-target-indication algorithm for optical image sequences. IEEE Trans. AES., 1990, 26(3): 434-439
  • 5Porat B, Friedlander B. A frequency domain algorithm for multiframe detection and estimation of dim targets. IEEE Trans. PAMI., 1990, 12(4): 398-401
  • 6Blostein S D, Huang T S. Detecting small, moving objects in image sequences using sequential hypothesis testing. IEEE Trans. SP., 1991, 39(7): 1611-1629
  • 7Blostein S D, Richardson H S. A sequential detection approach to target tracking. IEEE Trans. AES., 1994, 30(1): 197-212
  • 8Barniv Y. Dynamic programming solution for detection dim moving targets. IEE Trans. AES., 1994, 30(1): 197-212
  • 9Shirvaikar M V, Trivedi M M. A neural network filter to detect small targets in high clutter backgrounds. IEEE Trans. NN., 1995, 6(1): 252-257
  • 10Liou R J, Azimi-Sadjadi M R. Dim target detection using high order correlation method, IEEE Trans. AES., 1993, 29(3): 841-856

共引文献83

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部