期刊文献+

疲劳裂纹扩展的不确定理论 被引量:3

Uncertain theory for fatigue crack extension
下载PDF
导出
摘要 在原有处理不确定问题的两种非概率方法的基础上,提出二阶区间分析方法和二阶凸模型方法,将不确定参数用区间或者凸集来描述;再利用Taylor级数展开法对含有不确定参数的裂纹扩展速率及寿命进行估计.同时给出传统的概率方法和两种不确定性方法的相互包含关系,对算例结果进行验证.通过对00Cr17Ni14Mo2材料裂纹扩展速率及寿命的计算,将区间分析方法、凸模型理论和传统的概率方法进行比较.结果表明,该理论在处理不确定问题时是有效的,且具有对统计信息依赖小,计算方法简便、实用和精度高的特点. Based on the foremost two non-probabilistic methods, second-order interval analysis method and second-order convex model method were advanced. The uncertain theories described all the uncertainties as interval or convex set. Then through the Taylor series expansion, the interval range of fatigue crack growth rate and its life with uncertainty parameters can be estimated. The inclusion relation of traditional probabilistic method and two uncertain theories was presented. This inclusion relation can verify the results of examples. The fatigue crack growth rate and its life of 00Cr17Ni14Mo2 were computed to illustrate that uncertain theories are effective by comparing with the interval analysis method, convex model method and the traditional probabilistic method. Their advantages are that they only need less statistical data and the method is simple, practical and with high precision.
作者 王军 邱志平
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第12期1428-1432,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家杰出青年科学基金资助项目(10425208) 高等学校学科创新引智计划资助项目(B07009)
关键词 疲劳裂纹扩展速率 疲劳裂纹扩展寿命 区间分析方法 凸模型方法 不确定性 fatigue crack growth rate fatigue crack growth life interval analysis method convex model method uncertainty
  • 相关文献

参考文献11

二级参考文献30

  • 1邱志平,王晓军.结构疲劳寿命的区间估计[J].力学学报,2005,37(5):653-657. 被引量:14
  • 2[1]Goggin P R. The elastic constants carbon-fiber composite[J]. Journal Material Science, 1973, 8:233 ~ 244
  • 3[2]Qiu Zhiping, Chen Suhuan, Na Jingxin. The Rayleigh quotient method for computing eigenvalue bounds of vibrational systems with interval parameters[J]. Acta Solid Mechanics Sinica, 1993, 6:309~ 318
  • 4[3]Qiu Z P, Chen Suhuan, Elishakoff I. Natural frequencies of structures with uncertain but nonrandom parameters[ J]. Journal of Optimization Theory and Applications, 1995, 86:669 ~ 683
  • 5[4]Qiu Z P, Mueller P C, Frommer A. Stability robustness bounds for linear state-space models with structured uncertainty based on ellipsoidal set-theoretic approach [ J ]. Mathematics and Computers in Simulation, 2001, 56:35 ~ 53
  • 6[5]Qiu Z P, Elishakoff I. Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152(3-4):361 ~ 372
  • 7[6]Moore R E. Methods and applications of interval analysis[ M]. Philadelphia, SIAM, 1979
  • 8[7]Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models [ J ]. Structural Safety,1995, 17:91 ~ 109
  • 9[8]Elishakoff I, Li Y W, Starnes J J H. A deterministic method to predict the effect of unknown-but-bounded elastic moduli on the buckling of composite structures[ J]. Computer Methods in Applied Mechanics and Engineering, 1994, 111: 155 ~ 167
  • 10Qiu z P, Chen S H, Elishakoff I. Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameters[J]. Chao, Solitons & Fractals, 1996, 7(3) : 425- 434.

共引文献65

同被引文献32

  • 1郭辉,赵宁,曹蕾蕾,张淑艳.渐开线直齿轮齿根裂纹扩展模拟[J].系统仿真学报,2007,19(13):2899-2902. 被引量:12
  • 2郦正能.结构耐久性和损伤容限设计理论与方法[M].北京:北京航空航天大学出版社,1998.
  • 3刘文埏 郑旻仲 费斌军.概率断裂力学与概率损伤容限/耐久性[M].北京:北京航空航天大学出版社,1999.101-127.
  • 4Elishakoff I, Colombi P. Combination of probabilistic and convex models of uncertainty when scare knowledge is presenton acoustic excitation parameters [J]. Computer Methods in Applied Mechanics and Engineering, 1993, 104(2): 187-209.
  • 5Elishakoff I, Elisseeff P G, Stewart A L. Non-probabilistic, convex-theoretic modeling of scatter in material properties [J].SIAA Journal, 1994, 32(4): 843-849.
  • 6Ben-Haim Y, Chen G, Soong T T. Maximum structural response using convex models [J]. ASCE Journal of Engineering Mechanics, 1996, 122(4): 325-333.
  • 7Qiu Z P. Comparison of static response of structures using convex models and interval analysis method [J]. International Journal for Numerical Methods in Engineering, 2003, 56: 1735-1753.
  • 8Qiu Z P, Wang X J. Two non - probabilistic set - theoretical models for dynamic response and buckling failure measures of bars with unknown- but- bounded initial imperfections [J]. International Journal of Solids and Structures, 2005, 42(3/4) : 1039-1054.
  • 9Qiu Z P, Lin Q, Wang X J. Convex models and probabilistic approach of nonlinear fatigue failure [ J ]. Journal of Engineering Mechanics, 1987, 113(9): 1319-1336.
  • 10Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis [J].AIAA Journal, 1997, 35(4) :725-735.

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部