期刊文献+

主成分分析在舰船辐射噪声分类识别中的应用 被引量:10

Application of principal component analysis to ship-radiated noise classification and recognition
下载PDF
导出
摘要 主成分分析(PCA)是经典的多元统计分析方法,在处理多变量综合问题方面有比较突出的优势。本文主要探讨了主成分分析在舰船辐射噪声信号分类识别中的应用。在经典功率谱的基础上尝试将PCA技术运用在两种不同的方法中,对两种舰船辐射噪声进行了特征提取和分类识别,得到了较好的效果。 Principal Component Analysis is a classic multivariate statistical analysis method, which has obvious advantage in the integrated multi-variable problem. This paper works on the application of PCA to the ship-radiated noise classification and recognition. By using the PCA technology to two different methods on the basis of classic power spectrum, we extract features of 2 different types of ship-radiated noises and complete the classification and recognition. The results indicate that the method is effective and valid.
作者 张岩 尹力
出处 《应用声学》 CSCD 北大核心 2009年第1期20-26,共7页 Journal of Applied Acoustics
关键词 主成分分析 舰船辐射噪声 功率谱 特征提取 分类识别 Principal Component Analysis, Ship-radiated noise, Power spectrum, Feather extraction, Classification and recognition
  • 相关文献

参考文献2

  • 1Feng Zhou. Principal Component Analysis on face recognition and hand posture recognition, http://www, ntu. edu. sg/home/aswduch/Teachingv'assignl, html, 2005.
  • 2芮挺 ,沈春林 ,TIAN Qi ,丁健 .ICA与PCA特征抽取能力的比较分析[J].模式识别与人工智能,2005,18(1):124-128. 被引量:8

二级参考文献10

  • 1Xu L. Theories of Unsupervised Learning, PCA and Its Nonlinear Extensions. In: Proc of IEEE International Conference on Neural Networks. Orlando, USA, 1994, 1254-1257.
  • 2Turk M, Pentland A. Eigenface for Recognition. Journal of Cognitive Neuroscienee, 1991, 3(1): 71-86.
  • 3Jutten C, Herault J. Independent Component Analysis Versus Principal Component Analysis. In: Proc of the European Conference on Signal Processing. Grenoble, France, 1988, 643-646.
  • 4Comon P. Independent Component Analysis, A New Concept? Signal Processing, 1994, 36(3): 287-314.
  • 5Amari S. Super Efficiency in Blind Source Separation. IEEE Trans on Signal Processing, 1999, 47(4): 936-944.
  • 6Bartlett M, Lades H, Sejnowski T. Independent Component Representations of Face Recognition: In: Proc of the SPIE Symposium on Electronic Imaging: Human Vision and Electronic Imaging. SanJose, USA, 1998, 3299-3310.
  • 7Hyvarinen A. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Trans on Neural Networks, 1999, 10(3): 623-634.
  • 8杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用[J].国外医学(生物医学工程分册),2000,23(3):129-134. 被引量:58
  • 9丁佩律,梅剑锋,张立明,康学雷.基于独立分量分析的人脸自动识别方法研究[J].红外与毫米波学报,2001,20(5):361-364. 被引量:28
  • 10曾生根,朱宁波,包晔,夏德深.一种改进的快速独立分量分析算法及其在图象分离中的应用[J].中国图象图形学报(A辑),2003,8(10):1159-1165. 被引量:26

共引文献7

同被引文献55

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部