期刊文献+

基于测地距离的基本解方法求解非齐次各向异性IHCP问题

Method of fundamental solutions based on geodesic distance for inhomogeneous inverse heat conduction problems in anisotropic medium.
下载PDF
导出
摘要 提出了一种求解非齐次各向异性热传导方程一类反问题IHCP(inverse heat conduction problem)的无网格方法,该方法通过借助基于测地距离的Multiquadric(MQ)作为基函数得到整个时间空间区域上的一个近似特解,然后用基于测地距离的基本解方法直接在整个时间空间区域上对相应的齐次问题进行求解.用截断奇异值分解(TSVD)法求解所得病态线性方程组,用L-曲线准则确定正则化参数.用数值例子验证了该方法的有效性,并分析了数值解的精度与参数Tc、的关系. A mesbless method for the numerical solution of inhomogeneous inverse heat conduction problems in anisotropic medium is proposed. By using geodesic distance based Multiquadric (MQ) as basis functions, the new approach leads to a global approximation to a particular solution in both the spacial and time domains. Then the geodesic distance based method of fundamental solutions is used to solve the corresponding homogeneous problem. To tackle the ill-conditioning problem of the resultant linear system of equations, the trucated regular value decomposition(TSVD) based on the L-curve criterion is used to choose the regularization parameter. The effectiveness of the algorithm is demonstrated by several numerical examples. The relationships between the accuracy of the numerical solutions and the value of parameters T and c are also investigated.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2009年第1期24-32,共9页 Journal of Zhejiang University(Science Edition)
关键词 Multiquadric(MQ) 基本解方法 测地距离 非齐次IHCP 截断奇异值分解 L-曲线准则 Multiquadric (MQ) method of fundamental solutions geodesic distance inhomogeneous IHCP trucated regular value decomposition (TSVD) L-curve criterion
  • 相关文献

参考文献32

  • 1JONAS P, LOUIS A K. Approximate inverse for a one-dimensional inverse heat conduction problem[J]. Inverse Problems, 2000,16 : 17 5- 8 5.
  • 2LESNIC D, ELLIOTT L. The decomposition approach to inverse heat conduction[J]. J Math Anal Appl, 1999, 232:82-98.
  • 3LIU J. A stability analysis on Beck's procedure for inverse heat conduction problem[J].J Comput Phys, 1996,123:65-73.
  • 4SHEN S Y. A numerical study of inverse heat conduction problem[J]. Comput Math Appl, 1999,38 : 173- 88.
  • 5KUPRADZE V D, ALEKSIDZE M A. The method of functional equations for the approximate solution of certain boundary value problems [J]. Comput Math Math Phys, 1964,4 : 82-126.
  • 6FAIR WEATHER G, KARAGEORGHIS A. The method of fundamental solutions for elliptic boundary value problems[J]. Adv Comput Math, 1998,9 (1,2) 69-95.
  • 7GOLBERG M A, CHEN C S. The method of fundamental solutions for potential, Helmholtz and diffusion problems[C]//GOLBERG M A. Boundary Integral Methods. Southampton, Boston: Computational Mechanics Publications, 1998 : 103-176.
  • 8HON Y C, WEI T. A fundamental solution method for inverse heat conduction problem[J].Engrg Anal Bound Elem, 2004,28 : 489-495.
  • 9HON Y C, WEI T. The method of fundamental solu tion for solving multidimensional inverse heat conduc tion problems[J]. CMES: Comput Model Engrg Sci, 2005,7:119-132.
  • 10DOND C F, SUN F Y, MENG B Q. A method of fundamental solutions for inverse heat conduction problems in an anisotropic medium[J]. Engineering Analysis with Boundary Elements, 2007,31 ( 1 ) :75-82.

二级参考文献36

  • 1王钧,孙方裕,金邦梯.基本解方法求解一个三维线弹性力学反问题[J].浙江大学学报(理学版),2006,33(2):134-138. 被引量:4
  • 2董超峰,李启会.测地距离的基本解方法求解各向异性热传导方程[J].浙江大学学报(理学版),2007,34(4):390-395. 被引量:1
  • 3OZISIK M N.Heat Conduction[M].New York:A Wiley-Interscience Publication,1980.
  • 4LIJIMA K,ONISHI K.Lattice-free finite difference method for backward heat conduction problems[J].Comput Stud,2004,5:3-14.
  • 5GUPTA N,CHANDRA S.Temperature prediction model for controlling casting superheat temperature\[J].ISIJ International,2004,44:1517-1526.
  • 6HAN H,INGHAM D B,YUAN Y.The boundary element method for the solution of the backward heat conduction equation[J].J Comput Phys,1995,116(4):292-299.
  • 7MERA N S,ELLIOTT L,INGHAM D B,et al.An iterative boundary element method for solving the onedimensional backward heat conduction problem[J].International J of Heat and Mass Transfer,2001,44(10):1937-1946.
  • 8KUPRADZE A D,ALEKSIDZE M A.The method of functional equations for the approximate solution of certain boundary value problems[J].Computational Mathematics and Mathematical Physics,1964,4:82-126.
  • 9FAIRWEATHER G,KARAGEORGHIS A.The method of fundamental solutions for elliptic boundary value problems[J].Adv Comput Math,1998,9(1,2):69-95.
  • 10GOLBERG M A,CHEN C S.The method of fundamental solutions for potential,Helmholtz and diffusion problems[C]//GOLBERG M A.Boundary Integral Methods.Southampton,Boston:Computational Mechanics Publications,1998:103-176.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部