期刊文献+

基于批式呼吸计量法的溶解性COD组分划分 被引量:14

Fractionation of Soluble COD in Wastewater Based on Batch Respirometric Method
原文传递
导出
摘要 利用批式好氧呼吸计量法结合溶解性慢速水解COD(SH)水解动力学拟合提出了溶解性COD(SCOD)的组分划分方案.上海2个污水处理厂进水的SCOD组分划分结果表明,A厂沉砂池出水(典型生活污水)的SCOD中含有43.5%~58.6%SH、21.8%~35.2%易生物降解COD(SS)和15.4%~30.9%溶解性惰性COD(SI);B厂沉砂池出水(长距离输送的合流制污水)SCOD中含有34.5%~45.2%SH、29.3%~37.7%SS和25.6%~31.2%SI.9组不同水样的试验拟合结果表明,一级动力学能够很好地描述SH的水解过程,A厂和B厂进水SH的水解速率常数分别为28.00~39.77 d-1和26.48~29.52 d-1.该组分划分方案能够实现SS积分区域的理论划分,并消除溶解性微生物产物对SI测定的影响. A fractionation protocol of soluble COD (SCOD) was put forward by combining respirometric method with hydrolysis kinetics of soluble slowly biodegradable COD (SH). SCOD fractionation results of two wastewater treatment plants (WWTP) in Shanghai show that the SCOD in sand basin effluents (typical domestic wastewater) of WWTP A is composed of 43.5%-58.6% SH, 21.8%-35.2% readily biodegradable COD (Ss) and 15.4%-30.9% soluble inert COD (S1), and those SCOD fractions in sand basin effluents (combined sewers after long pipeline transportation) of WWTP B are 34.5 % -45.2 %, 29.3 % -37.7 % and 25.6 % -31.2 %, respectively. The linear regression results of respirometric tests data from nine samples demonstrate that the first-order kinetics can reliably describe hydrolysis process of SH, and the kinetic constants of SH from WWTP A and B are respectively 28.00-39.77 d^-1 and 26.48-29.52 d^-1 . Experimental results demonstrate that this protocol can achieve theoretical partition for the integration area of Ss, and also eliminate the effect of soluble microbial products on S1 determination.
出处 《环境科学》 EI CAS CSCD 北大核心 2009年第1期75-79,共5页 Environmental Science
关键词 污水 活性污泥数学模型 COD组分划分 水解 wastewater activated sludge model COD fractionation hydrolysis
  • 相关文献

参考文献22

  • 1Henze M, Gujer W, Mino T, et al. Activated Sludge Moedels ASM1, ASM2, ASM2d and ASM3 [R]. London: IAW Publishing, 2000.
  • 2Orhon D, Cokgor E U. COD fractionation in wastewater characterization-the state of the art [J]. J Chem Tech Biotechnol, 1997, 68(3) : 283-293.
  • 3Cokgor E U, Sozen S, Orhon D, et al. Respirometric analysis of activated sludge behaviour-I: assessment of the readily biodegradable substrate [J]. Water Res, 1998, 32(2) : 461-475.
  • 4Roeleveld P J, van Loosdercht M C M. Experience with guidelines for wastewater characterization in the Netherlands [ J ]. Water Sci Technol, 2002, 45(6): 77-87.
  • 5Brdjanovic D, van Loosdercht M C M, Versteeg P, et al. Modeling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder [J]. Water Res, 2000, 34(3): 846-858.
  • 6Salem S, Berends D, Heijnen J J, et al. Model-based evaluation of a new upgrading concept for N-removal [ J]. Water Sci Technol, 2002, 45(6) : 169-176.
  • 7Makinia J, Swinarski M, Dobiegala E. Experiences with computer simulation at two large wastewater treatment plants in northern Poland [J]. Water Sci Technol, 2002, 45(6) : 209-218.
  • 8Makinia J, Rosenwinkel K H, Spering V. Long-term simulation of the activated sludge process at the Hanover-Gummerwald pilot WWTP [J]. Water Res, 2005, 39(8): 1489-1502.
  • 9Wang C, Zeng Y, Lou J, et al. Dynamic simulation of a WWTP operated at low dissolved oxygen condition by integrating activated sludge model and a floc model [J]. Biochem Eng J, 2007, 33(3) : 217-227.
  • 10Koch G, Ktthni M, Gujer W, et al. Calibration and validation of activated sludge model no. 3 for Swiss municipal wastewater [ J ]. Water Res, 2000, 34(14): 3580-3590.

共引文献101

同被引文献172

引证文献14

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部