期刊文献+

基于FART神经网络的高速公路交通事件检测法 被引量:2

Highway traffic incident detection method based on FART neural network
下载PDF
导出
摘要 突发性交通事件是造成高速公路交通拥堵的主要原因,为了快速并准确地检测交通事件,有效提高高速公路的利用率和通行能力,将一种模糊论与自适应谐振神经网络相结合的聚类算法—FuzzyART神经网络算法用于检测高速公路交通事件。根据高速公路事件检测相关参数之间的关系,选用了交通流密度残差和平均速度残差的组合向量作为神经网络的输入,给出了事件检测的算法步骤和输出判断方法,并进行了仿真实验。仿真结果表明,该算法不仅能够检测出交通事件的发生及其造成的拥堵程度,还可以快速识别已有的交通事件类型,记忆未知的交通事件类型,实现边工作、边学习,且检测结果具有较高的稳定性和准确性。 Unexpected traffic incident is the main cause of highway traffic congestion, so detection traffic incidents quickly and accurately can effectively improve the utilization and capacity of highway. A clustering algorithm combined adaptive resonance theory with fuzzy theory-Fuzzy ART neural network algorithm was used to detect highway traffic incidents. According to the rela- tions of detection parameters, the vectors of traffic density differences and average speed differences were selected as network' s input. At the same time, the detection steps and how to judge the output of the network were described. The results of simula- tions show that, the algorithm can detect occurring and the congestion degree of traffic incidents, and also can quickly identify learned types and store the unlearned types. The neural network(NN) combines work and study,so the resuhs of detection have higer stablility and accuration.
出处 《机电工程》 CAS 2009年第1期12-16,共5页 Journal of Mechanical & Electrical Engineering
基金 国家自然科学基金资助项目(60504027 60573123) 中国博士后科学基金资助项目(20060401037)
关键词 模糊ART 神经网络 交通事件 检测 fuzzy ART(FART) neural network(NN) traffic incident detection
  • 相关文献

参考文献9

二级参考文献27

  • 1高翔,胡正国,王敏.神经网络在异常检测中的研究与应用[J].仪器仪表学报,2002,23(z2):469-470. 被引量:6
  • 2钱迎雪,黄石生,周其节.应用ART2人工神经网络自组织形成焊缝图象中的典型空间模式[J].控制理论与应用,1994,11(6):720-727. 被引量:1
  • 3王兆华,刘志强.视频检测技术在交通安全中的应用[J].交通运输工程与信息学报,2005,3(3):100-103. 被引量:17
  • 4JHan.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 5[1]T. Sorsa, H. N. Koivo and H. Koivisto. Neural Networks in Process Fault Diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991,21,(4):815~823
  • 6[2]G. A. Carpenter, S. Grossberg and D. B. Rosen. FuzzyART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System[J]. Neural Networks,1991,(4):759~771
  • 7Carpenter,et al.Fuzzy ART:fast stable learning and categorization of analog patterns by an adaptive resonance system[J].Neural Networks,1991,4(9):759-771.
  • 8蔡元龙.模式识别[M].西安:西安电子科技大学出版社,1992..
  • 9黄德双.神经网络模式识别系统理论[M].北京:电子工业出版,1995,12.41.
  • 10Carpenter G A ,Grossberg S. ART2, self-organization of stable category recognition codes for analog input patterns. Allpied Optics, 1987,26.

共引文献9

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部