期刊文献+

基于四分量散射模型的多极化SAR图像分类 被引量:18

Classification of Polarimetric SAR Image Based on Four-component Scattering Model
原文传递
导出
摘要 基于四分量散射模型提出了一种多极化SAR(synthetic aperture radar)图像非监督分类算法。与Freeman三分量散射模型不同,四分量散射模型在Freeman三分量的基础上增加了螺旋散射分量(helix),该分量反映了复杂地貌和不规则城市建筑的散射机理,可以用来处理复杂的场景图像。算法强调了初始分类的重要性,在初始分类中考虑了混合散射机制像素的存在,从而提高了分类结果的精确度。聚类过程中,采用由四个散射分量组成的特征向量进行迭代聚类。为了实现算法的完全非监督,利用特征向量给出了一种新的聚类终止准则。NASA/JPL实验室AIRSAR全极化数据分类实验结果表明,该算法具有较好的分类效果,并获得了较高的分类精度。 An improved classification algorithm is proposed to deal with polarimetric synthetic aperture radar (POLSAR) images. This algorithm is based on a four-component scattering model, compared to the three-component (surface, double-bounce and volume) model intro- duced by Freeman and Durden, the four-component scattering model introduces the helix scattering as its fourth compenent, which can describe complex terrains and man-made targets in urban areas; so the four-component scattering model can deal with general scattering cases. In addition, this algorithm emphasizes the existence of pixels with mixed scattering mechanism, and applies the result of the four-component decomposition as feature vector to initial merging and the final iterative classifier. We use L-band AIRSAR data to demonstrate this improved method; and the experimental result verifies the effectiveness of this improved algorithm.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2009年第1期122-125,共4页 Geomatics and Information Science of Wuhan University
基金 武汉大学测绘遥感信息工程国家重点实验室开放研究基金资助项目 湖北省自然科学基金资助项目(2007ABA257)
关键词 多极化合成孔径雷达 四分量分解 非监督分类 polarimetric synthetic aperture radar four-component decomposition unsupervised classification
  • 相关文献

参考文献7

  • 1Lemoine G G, De Grandi G F, Sieber A J. Polarimetric Contrast Classification of Agricultural Fields Using MAESTRO1 AIRSAR Data[J]. Int J Remote Sensing, 1994,15(14) :2 851-2 869
  • 2Yueh H A, Swartz A A, Kong J A, et al. Optimal Classification of Terrain Cover Using Normalized Polarimetric Data[J]. J Geophys Res, 1993, 91 (B12): 15 261-15 267
  • 3Lee J S, Grunes M R, Kwok R. Classification of Multi-look Polarimetric SAR Imagery Based on Complex Wishart Distribution[J]. Int J Remote Sensing, 1994, 15(11):2 299-2 311
  • 4Lee J S, Grunes M R, Ainsworth T L, et al. Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier. IEEE Trans[J]. Geosci Remote Sensing, 1999, 37 (5): 2 249-2 258
  • 5Cloude S R, Pottier E. An Entropy Based Classification Scheme for Polarimetrie SAR Data[C]. IEEE International Geoscience and Remote Sensing Symposium, Florence, 1995
  • 6Lee J S, Mitchell R, Pottier G E, et al. Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics. IEEE Trans. Geosci[J]. Remote Sensing, 2004,42(4) : 722-731
  • 7Yoshio Yamaguchi, Toshifumi Moriyama, Motoi Ishido, et al. Four-Component Scattering Model for Polarimetric SAR Image Decomposition[J].IEEE Trans Geosci Remote Sensing, 2005, 43(8) : 1 699- 1 706

同被引文献141

  • 1刘秀清,杨汝良.基于全极化SAR非监督分类的迭代分类方法[J].电子学报,2004,32(12):1982-1986. 被引量:8
  • 2牛春盈,江万寿,黄先锋,谢俊峰.面向对象影像信息提取软件Feature Analyst和eCognition的分析与比较[J].遥感信息,2007,29(2):66-70. 被引量:17
  • 3Powel G J, Wilson K S. Segmenting Shadows from Synthetic Aperture RADAR Imagery Using Edge Enhanced Region Growing[J]. Algorithms and Systems for Optical Information Processing, 2000,4: 6 114.
  • 4Weisenssel R A, Karl W C, Castanon D A, et al. Markov Random Field Segmentation Methods for SAR Target Chips[J]. Algorithms for Synthetic Aperture Radar Imagery, 2000,5:462-473.
  • 5Aitnouri E, Wang S R, Ziou D. Segmentation of Small Vehicle Targets in SAR Images[J]. Automatic Target Recognition Ⅻ, 2002,4 726 : 35-45.
  • 6Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by Simulated Annealing[J]. Science, 1983, 220:671-680.
  • 7Dempster A, Laird N, Rubin D. Maximum Likelihood from Incomplete Data Via the EM Algorithm [J]. Journal of the Royal Statistical Society, 1977, 39:1-38.
  • 8Boykov Y , Veksler O, Zabih R, Fast Approximate Energy Minimization Via Graph Cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,2: 1 222-1 239.
  • 9Kolmogorov V, Zabih R. What Energy Functions Can be Minimized Via Graph Cuts?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2):147-159.
  • 10杨文.SAR图像自动目标识别若干关键技术研究[D].武汉:武汉大学,2004.

引证文献18

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部